Convex Optimization in Normed Spaces

Convex Optimization in Normed Spaces PDF Author: Juan Peypouquet
Publisher: Springer
ISBN: 3319137107
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independent research on the topic. It is also a concise, easy-to-follow and self-contained textbook, which may be useful for any researcher working on related fields, as well as teachers giving graduate-level courses on the topic. It will contain a thorough revision of the extant literature including both classical and state-of-the-art references.

Convex Optimization in Normed Spaces

Convex Optimization in Normed Spaces PDF Author: Juan Peypouquet
Publisher: Springer
ISBN: 3319137107
Category : Mathematics
Languages : en
Pages : 132

Get Book Here

Book Description
This work is intended to serve as a guide for graduate students and researchers who wish to get acquainted with the main theoretical and practical tools for the numerical minimization of convex functions on Hilbert spaces. Therefore, it contains the main tools that are necessary to conduct independent research on the topic. It is also a concise, easy-to-follow and self-contained textbook, which may be useful for any researcher working on related fields, as well as teachers giving graduate-level courses on the topic. It will contain a thorough revision of the extant literature including both classical and state-of-the-art references.

Convexity and Optimization in Banach Spaces

Convexity and Optimization in Banach Spaces PDF Author: Viorel Barbu
Publisher: Springer Science & Business Media
ISBN: 940072246X
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
An updated and revised edition of the 1986 title Convexity and Optimization in Banach Spaces, this book provides a self-contained presentation of basic results of the theory of convex sets and functions in infinite-dimensional spaces. The main emphasis is on applications to convex optimization and convex optimal control problems in Banach spaces. A distinctive feature is a strong emphasis on the connection between theory and application. This edition has been updated to include new results pertaining to advanced concepts of subdifferential for convex functions and new duality results in convex programming. The last chapter, concerned with convex control problems, has been rewritten and completed with new research concerning boundary control systems, the dynamic programming equations in optimal control theory and periodic optimal control problems. Finally, the structure of the book has been modified to highlight the most recent progression in the field including fundamental results on the theory of infinite-dimensional convex analysis and includes helpful bibliographical notes at the end of each chapter.

Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Convex Analysis and Monotone Operator Theory in Hilbert Spaces PDF Author: Heinz H. Bauschke
Publisher: Springer
ISBN: 3319483110
Category : Mathematics
Languages : en
Pages : 624

Get Book Here

Book Description
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.

Convex Optimization Algorithms

Convex Optimization Algorithms PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529280
Category : Mathematics
Languages : en
Pages : 576

Get Book Here

Book Description
This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Foundations of Mathematical Optimization

Foundations of Mathematical Optimization PDF Author: Diethard Ernst Pallaschke
Publisher: Springer Science & Business Media
ISBN: 9401715882
Category : Mathematics
Languages : en
Pages : 597

Get Book Here

Book Description
Many books on optimization consider only finite dimensional spaces. This volume is unique in its emphasis: the first three chapters develop optimization in spaces without linear structure, and the analog of convex analysis is constructed for this case. Many new results have been proved specially for this publication. In the following chapters optimization in infinite topological and normed vector spaces is considered. The novelty consists in using the drop property for weak well-posedness of linear problems in Banach spaces and in a unified approach (by means of the Dolecki approximation) to necessary conditions of optimality. The method of reduction of constraints for sufficient conditions of optimality is presented. The book contains an introduction to non-differentiable and vector optimization. Audience: This volume will be of interest to mathematicians, engineers, and economists working in mathematical optimization.

Convex Analysis in General Vector Spaces

Convex Analysis in General Vector Spaces PDF Author: C. Zalinescu
Publisher: World Scientific
ISBN: 9812380671
Category : Science
Languages : en
Pages : 389

Get Book Here

Book Description
The primary aim of this book is to present the conjugate and sub/differential calculus using the method of perturbation functions in order to obtain the most general results in this field. The secondary aim is to provide important applications of this calculus and of the properties of convex functions. Such applications are: the study of well-conditioned convex functions, uniformly convex and uniformly smooth convex functions, best approximation problems, characterizations of convexity, the study of the sets of weak sharp minima, well-behaved functions and the existence of global error bounds for convex inequalities, as well as the study of monotone multifunctions by using convex functions.

Convexity and Well-Posed Problems

Convexity and Well-Posed Problems PDF Author: Roberto Lucchetti
Publisher: Springer Science & Business Media
ISBN: 0387310827
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
This book deals mainly with the study of convex functions and their behavior from the point of view of stability with respect to perturbations. We shall consider convex functions from the most modern point of view: a function is de?ned to be convex whenever its epigraph, the set of the points lying above the graph, is a convex set. Thus many of its properties can be seen also as properties of a certain convex set related to it. Moreover, we shall consider extended real valued functions, i. e. , functions taking possibly the values?? and +?. The reason for considering the value +? is the powerful device of including the constraint set of a constrained minimum problem into the objective function itself (by rede?ning it as +? outside the constraint set). Except for trivial cases, the minimum value must be taken at a point where the function is not +?, hence at a point in the constraint set. And the value ?? is allowed because useful operations, such as the inf-convolution, can give rise to functions valued?? even when the primitive objects are real valued. Observe that de?ning the objective function to be +? outside the closed constraint set preserves lower semicontinuity, which is the pivotal and mi- mal continuity assumption one needs when dealing with minimum problems. Variational calculus is usually based on derivatives.

Optimization by Vector Space Methods

Optimization by Vector Space Methods PDF Author: David G. Luenberger
Publisher: John Wiley & Sons
ISBN: 9780471181170
Category : Technology & Engineering
Languages : en
Pages : 348

Get Book Here

Book Description
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.

Convex Analysis and Nonlinear Optimization

Convex Analysis and Nonlinear Optimization PDF Author: Jonathan Borwein
Publisher: Springer Science & Business Media
ISBN: 0387312560
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Optimization on Metric and Normed Spaces

Optimization on Metric and Normed Spaces PDF Author: Alexander J. Zaslavski
Publisher: Springer Science & Business Media
ISBN: 0387886214
Category : Mathematics
Languages : en
Pages : 443

Get Book Here

Book Description
"Optimization on Metric and Normed Spaces" is devoted to the recent progress in optimization on Banach spaces and complete metric spaces. Optimization problems are usually considered on metric spaces satisfying certain compactness assumptions which guarantee the existence of solutions and convergence of algorithms. This book considers spaces that do not satisfy such compactness assumptions. In order to overcome these difficulties, the book uses the Baire category approach and considers approximate solutions. Therefore, it presents a number of new results concerning penalty methods in constrained optimization, existence of solutions in parametric optimization, well-posedness of vector minimization problems, and many other results obtained in the last ten years. The book is intended for mathematicians interested in optimization and applied functional analysis.