Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations PDF Author: Simon Markfelder
Publisher:
ISBN: 9783030837860
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis-Székelyhidi approach to the setting of compressible Euler equations. The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial boundary value problem for the Euler system. Next some applications of this theorem are discussed, in particular concerning the Riemann problem. Finally there is a survey of some related results. This self-contained book is suitable for both beginners in the field of hyperbolic conservation laws as well as for advanced readers who already know about convex integration in the incompressible framework.

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations PDF Author: Simon Markfelder
Publisher:
ISBN: 9783030837860
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis-Székelyhidi approach to the setting of compressible Euler equations. The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial boundary value problem for the Euler system. Next some applications of this theorem are discussed, in particular concerning the Riemann problem. Finally there is a survey of some related results. This self-contained book is suitable for both beginners in the field of hyperbolic conservation laws as well as for advanced readers who already know about convex integration in the incompressible framework.

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations PDF Author: Simon Markfelder
Publisher: Springer Nature
ISBN: 3030837858
Category : Mathematics
Languages : en
Pages : 244

Get Book Here

Book Description
This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis–Székelyhidi approach to the setting of compressible Euler equations. The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial boundary value problem for the Euler system. Next some applications of this theorem are discussed, in particular concerning the Riemann problem. Finally there is a survey of some related results. This self-contained book is suitable for both beginners in the field of hyperbolic conservation laws as well as for advanced readers who already know about convex integration in the incompressible framework.

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations PDF Author: Simon Markfelder
Publisher: Springer
ISBN: 9783030837846
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied. This book presents, for the first time, a generalization of the De Lellis–Székelyhidi approach to the setting of compressible Euler equations. The structure of this book is as follows: after providing an accessible introduction to the subject, including the essentials of hyperbolic conservation laws, the idea of convex integration in the compressible framework is developed. The main result proves that under a certain assumption there exist infinitely many solutions to an abstract initial boundary value problem for the Euler system. Next some applications of this theorem are discussed, in particular concerning the Riemann problem. Finally there is a survey of some related results. This self-contained book is suitable for both beginners in the field of hyperbolic conservation laws as well as for advanced readers who already know about convex integration in the incompressible framework.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 836

Get Book Here

Book Description


Numerical Methods for Conservation Laws

Numerical Methods for Conservation Laws PDF Author: LEVEQUE
Publisher: Birkhäuser
ISBN: 3034851162
Category : Science
Languages : en
Pages : 221

Get Book Here

Book Description
These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. vVithout the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy.

Handbook of Mathematical Fluid Dynamics

Handbook of Mathematical Fluid Dynamics PDF Author: S. Friedlander
Publisher: Gulf Professional Publishing
ISBN: 008053354X
Category : Science
Languages : en
Pages : 627

Get Book Here

Book Description
The Handbook of Mathematical Fluid Dynamics is a compendium of essays that provides a survey of the major topics in the subject. Each article traces developments, surveys the results of the past decade, discusses the current state of knowledge and presents major future directions and open problems. Extensive bibliographic material is provided. The book is intended to be useful both to experts in the field and to mathematicians and other scientists who wish to learn about or begin research in mathematical fluid dynamics. The Handbook illuminates an exciting subject that involves rigorous mathematical theory applied to an important physical problem, namely the motion of fluids.

Singular Limits in Thermodynamics of Viscous Fluids

Singular Limits in Thermodynamics of Viscous Fluids PDF Author: Eduard Feireisl
Publisher: Springer Science & Business Media
ISBN: 3764388439
Category : Science
Languages : en
Pages : 411

Get Book Here

Book Description
Many interesting problems in mathematical fluid dynamics involve the behavior of solutions of nonlinear systems of partial differential equations as certain parameters vanish or become infinite. Frequently the limiting solution, provided the limit exists, satisfies a qualitatively different system of differential equations. This book is designed as an introduction to the problems involving singular limits based on the concept of weak or variational solutions. The primitive system consists of a complete system of partial differential equations describing the time evolution of the three basic state variables: the density, the velocity, and the absolute temperature associated to a fluid, which is supposed to be compressible, viscous, and heat conducting. It can be represented by the Navier-Stokes-Fourier-system that combines Newton's rheological law for the viscous stress and Fourier's law of heat conduction for the internal energy flux. As a summary, this book studies singular limits of weak solutions to the system governing the flow of thermally conducting compressible viscous fluids.

Convex Integration Theory

Convex Integration Theory PDF Author: David Spring
Publisher: Springer Science & Business Media
ISBN: 3034800606
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods.

Progress in Mathematical Fluid Dynamics

Progress in Mathematical Fluid Dynamics PDF Author: Tristan Buckmaster
Publisher: Springer Nature
ISBN: 3030548996
Category : Mathematics
Languages : en
Pages : 169

Get Book Here

Book Description
This volume brings together four contributions to mathematical fluid mechanics, a classical but still highly active research field. The contributions cover not only the classical Navier-Stokes equations and Euler equations, but also some simplified models, and fluids interacting with elastic walls. The questions addressed in the lectures range from the basic problems of existence/blow-up of weak and more regular solutions, to modeling and aspects related to numerical methods. This book covers recent advances in several important areas of fluid mechanics. An output of the CIME Summer School "Progress in mathematical fluid mechanics" held in Cetraro in 2019, it offers a collection of lecture notes prepared by T. Buckmaster, (Princeton), S. Canic (UCB) P. Constantin (Princeton) and A. Kiselev (Duke). These notes will be a valuable asset for researchers and advanced graduate students in several aspects of mathematicsl fluid mechanics.

Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations PDF Author: C.M. Dafermos
Publisher: Gulf Professional Publishing
ISBN: 9780444520487
Category : Mathematics
Languages : en
Pages : 684

Get Book Here

Book Description
This book contains several introductory texts concerning the main directions in the theory of evolutionary partial differential equations. The main objective is to present clear, rigorous, and in depth surveys on the most important aspects of the present theory.