Author: Robert R. Phelps
Publisher: Springer
ISBN: 3662215691
Category : Mathematics
Languages : en
Pages : 125
Book Description
These notes start with an introduction to the differentiability of convex functions on Banach spaces, leading to the study of Asplund spaces and their intriguing relationship to monotone operators (and more general set-values maps) and Banach spaces with the Radon-Nikodym property. While much of this is classical, some of it is presented using streamlined proofs which were not available until recently. Considerable attention is paid to contemporary results on variational principles and perturbed optimization in Banach spaces, exhibiting their close connections with Asplund spaces. An introductory course in functional analysis is adequate background for reading these notes which can serve as the basis for a seminar of a one-term graduate course. There are numerous excercises, many of which form an integral part of the exposition.
Convex Functions, Monotone Operators and Differentiability
Author: Robert R. Phelps
Publisher: Springer
ISBN: 3662215691
Category : Mathematics
Languages : en
Pages : 125
Book Description
These notes start with an introduction to the differentiability of convex functions on Banach spaces, leading to the study of Asplund spaces and their intriguing relationship to monotone operators (and more general set-values maps) and Banach spaces with the Radon-Nikodym property. While much of this is classical, some of it is presented using streamlined proofs which were not available until recently. Considerable attention is paid to contemporary results on variational principles and perturbed optimization in Banach spaces, exhibiting their close connections with Asplund spaces. An introductory course in functional analysis is adequate background for reading these notes which can serve as the basis for a seminar of a one-term graduate course. There are numerous excercises, many of which form an integral part of the exposition.
Publisher: Springer
ISBN: 3662215691
Category : Mathematics
Languages : en
Pages : 125
Book Description
These notes start with an introduction to the differentiability of convex functions on Banach spaces, leading to the study of Asplund spaces and their intriguing relationship to monotone operators (and more general set-values maps) and Banach spaces with the Radon-Nikodym property. While much of this is classical, some of it is presented using streamlined proofs which were not available until recently. Considerable attention is paid to contemporary results on variational principles and perturbed optimization in Banach spaces, exhibiting their close connections with Asplund spaces. An introductory course in functional analysis is adequate background for reading these notes which can serve as the basis for a seminar of a one-term graduate course. There are numerous excercises, many of which form an integral part of the exposition.
Convex Analysis and Monotone Operator Theory in Hilbert Spaces
Author: Heinz H. Bauschke
Publisher: Springer
ISBN: 3319483110
Category : Mathematics
Languages : en
Pages : 624
Book Description
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Publisher: Springer
ISBN: 3319483110
Category : Mathematics
Languages : en
Pages : 624
Book Description
This reference text, now in its second edition, offers a modern unifying presentation of three basic areas of nonlinear analysis: convex analysis, monotone operator theory, and the fixed point theory of nonexpansive operators. Taking a unique comprehensive approach, the theory is developed from the ground up, with the rich connections and interactions between the areas as the central focus, and it is illustrated by a large number of examples. The Hilbert space setting of the material offers a wide range of applications while avoiding the technical difficulties of general Banach spaces. The authors have also drawn upon recent advances and modern tools to simplify the proofs of key results making the book more accessible to a broader range of scholars and users. Combining a strong emphasis on applications with exceptionally lucid writing and an abundance of exercises, this text is of great value to a large audience including pure and applied mathematicians as well as researchers in engineering, data science, machine learning, physics, decision sciences, economics, and inverse problems. The second edition of Convex Analysis and Monotone Operator Theory in Hilbert Spaces greatly expands on the first edition, containing over 140 pages of new material, over 270 new results, and more than 100 new exercises. It features a new chapter on proximity operators including two sections on proximity operators of matrix functions, in addition to several new sections distributed throughout the original chapters. Many existing results have been improved, and the list of references has been updated. Heinz H. Bauschke is a Full Professor of Mathematics at the Kelowna campus of the University of British Columbia, Canada. Patrick L. Combettes, IEEE Fellow, was on the faculty of the City University of New York and of Université Pierre et Marie Curie – Paris 6 before joining North Carolina State University as a Distinguished Professor of Mathematics in 2016.
Contact Manifolds in Riemannian Geometry
Author: D. E. Blair
Publisher: Springer
ISBN: 3540381546
Category : Mathematics
Languages : en
Pages : 153
Book Description
Publisher: Springer
ISBN: 3540381546
Category : Mathematics
Languages : en
Pages : 153
Book Description
Convex Functions
Author: Jonathan M. Borwein
Publisher: Cambridge University Press
ISBN: 0521850053
Category : Mathematics
Languages : en
Pages : 533
Book Description
The product of a collaboration of over 15 years, this volume is unique because it focuses on convex functions themselves, rather than on convex analysis. The authors explore the various classes and their characteristics, treating convex functions in both Euclidean and Banach spaces.
Publisher: Cambridge University Press
ISBN: 0521850053
Category : Mathematics
Languages : en
Pages : 533
Book Description
The product of a collaboration of over 15 years, this volume is unique because it focuses on convex functions themselves, rather than on convex analysis. The authors explore the various classes and their characteristics, treating convex functions in both Euclidean and Banach spaces.
Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods
Author: Masao Fukushima
Publisher: Springer Science & Business Media
ISBN: 9780792353201
Category : Mathematics
Languages : en
Pages : 468
Book Description
The concept of `reformulation' has long played an important role in mathematical programming. A classical example is the penalization technique in constrained optimization. More recent trends consist of reformulation of various mathematical programming problems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. The book is a collection of peer-reviewed papers that cover such diverse areas as linear and nonlinear complementarity problems, variational inequality problems, nonsmooth equations and nonsmooth optimization problems, economic and network equilibrium problems, semidefinite programming problems, maximal monotone operator problems, and mathematical programs with equilibrium constraints. The reader will be convinced that the concept of `reformulation' provides extremely useful tools for advancing the study of mathematical programming from both theoretical and practical aspects. Audience: This book is intended for students and researchers in optimization, mathematical programming, and operations research.
Publisher: Springer Science & Business Media
ISBN: 9780792353201
Category : Mathematics
Languages : en
Pages : 468
Book Description
The concept of `reformulation' has long played an important role in mathematical programming. A classical example is the penalization technique in constrained optimization. More recent trends consist of reformulation of various mathematical programming problems, including variational inequalities and complementarity problems, into equivalent systems of possibly nonsmooth, piecewise smooth or semismooth nonlinear equations, or equivalent unconstrained optimization problems that are usually differentiable, but in general not twice differentiable. The book is a collection of peer-reviewed papers that cover such diverse areas as linear and nonlinear complementarity problems, variational inequality problems, nonsmooth equations and nonsmooth optimization problems, economic and network equilibrium problems, semidefinite programming problems, maximal monotone operator problems, and mathematical programs with equilibrium constraints. The reader will be convinced that the concept of `reformulation' provides extremely useful tools for advancing the study of mathematical programming from both theoretical and practical aspects. Audience: This book is intended for students and researchers in optimization, mathematical programming, and operations research.
Convex Analysis and Nonlinear Optimization
Author: Jonathan Borwein
Publisher: Springer Science & Business Media
ISBN: 0387312560
Category : Mathematics
Languages : en
Pages : 316
Book Description
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Publisher: Springer Science & Business Media
ISBN: 0387312560
Category : Mathematics
Languages : en
Pages : 316
Book Description
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.
Applied Nonlinear Functional Analysis
Author: Nikolaos S. Papageorgiou
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111286959
Category : Mathematics
Languages : en
Pages : 734
Book Description
The second edition covers the introduction to the main mathematical tools of nonlinear functional analysis, which are also used in the study of concrete problems in economics, engineering, and physics. The new edition includes some new topics on Banach spaces of functions and measures and nonlinear analysis.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111286959
Category : Mathematics
Languages : en
Pages : 734
Book Description
The second edition covers the introduction to the main mathematical tools of nonlinear functional analysis, which are also used in the study of concrete problems in economics, engineering, and physics. The new edition includes some new topics on Banach spaces of functions and measures and nonlinear analysis.
Introduction to the Analysis of Normed Linear Spaces
Author: J. R. Giles
Publisher: Cambridge University Press
ISBN: 9780521653756
Category : Mathematics
Languages : en
Pages : 298
Book Description
This is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. The reader need only be familiarity with elementary real and complex analysis, linear algebra and have studied a course in the analysis of metric spaces; knowledge of integration theory or general topology is not required. The text concerns the structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. The implications of the general theory are illustrated with a great variety of example spaces.
Publisher: Cambridge University Press
ISBN: 9780521653756
Category : Mathematics
Languages : en
Pages : 298
Book Description
This is a basic course in functional analysis for senior undergraduate and beginning postgraduate students. The reader need only be familiarity with elementary real and complex analysis, linear algebra and have studied a course in the analysis of metric spaces; knowledge of integration theory or general topology is not required. The text concerns the structural properties of normed linear spaces in general, especially associated with dual spaces and continuous linear operators on normed linear spaces. The implications of the general theory are illustrated with a great variety of example spaces.
Convex Optimization & Euclidean Distance Geometry
Author: Jon Dattorro
Publisher: Meboo Publishing USA
ISBN: 0976401304
Category : Mathematics
Languages : en
Pages : 776
Book Description
The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.
Publisher: Meboo Publishing USA
ISBN: 0976401304
Category : Mathematics
Languages : en
Pages : 776
Book Description
The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global positioning system (GPS), and distance-based pattern recognitionwill certainly simplify and benefit from this theory.We study the pervasive convex Euclidean bodies and their various representations.In particular, we make convex polyhedra, cones, and dual cones more visceral through illustration, andwe study the geometric relation of polyhedral cones to nonorthogonal bases biorthogonal expansion.We explain conversion between halfspace- and vertex-descriptions of convex cones,we provide formulae for determining dual cones,and we show how classic alternative systems of linear inequalities or linear matrix inequalities and optimality conditions can be explained by generalized inequalities in terms of convex cones and their duals.The conic analogue to linear independence, called conic independence, is introducedas a new tool in the study of classical cone theory; the logical next step in the progression:linear, affine, conic.Any convex optimization problem has geometric interpretation.This is a powerful attraction: the ability to visualize geometry of an optimization problem.We provide tools to make visualization easier.The concept of faces, extreme points, and extreme directions of convex Euclidean bodiesis explained here, crucial to understanding convex optimization.The convex cone of positive semidefinite matrices, in particular, is studied in depth.We mathematically interpret, for example,its inverse image under affine transformation, and we explainhow higher-rank subsets of its boundary united with its interior are convex.The Chapter on "Geometry of convex functions",observes analogies between convex sets and functions:The set of all vector-valued convex functions is a closed convex cone.Included among the examples in this chapter, we show how the real affinefunction relates to convex functions as the hyperplane relates to convex sets.Here, also, pertinent results formultidimensional convex functions are presented that are largely ignored in the literature;tricks and tips for determining their convexityand discerning their geometry, particularly with regard to matrix calculus which remains largely unsystematizedwhen compared with the traditional practice of ordinary calculus.Consequently, we collect some results of matrix differentiation in the appendices.The Euclidean distance matrix (EDM) is studied,its properties and relationship to both positive semidefinite and Gram matrices.We relate the EDM to the four classical axioms of the Euclidean metric;thereby, observing the existence of an infinity of axioms of the Euclidean metric beyondthe triangle inequality. We proceed byderiving the fifth Euclidean axiom and then explain why furthering this endeavoris inefficient because the ensuing criteria (while describing polyhedra)grow linearly in complexity and number.Some geometrical problems solvable via EDMs,EDM problems posed as convex optimization, and methods of solution arepresented;\eg, we generate a recognizable isotonic map of the United States usingonly comparative distance information (no distance information, only distance inequalities).We offer a new proof of the classic Schoenberg criterion, that determines whether a candidate matrix is an EDM. Our proofrelies on fundamental geometry; assuming, any EDM must correspond to a list of points contained in some polyhedron(possibly at its vertices) and vice versa.It is not widely known that the Schoenberg criterion implies nonnegativity of the EDM entries; proved here.We characterize the eigenvalues of an EDM matrix and then devisea polyhedral cone required for determining membership of a candidate matrix(in Cayley-Menger form) to the convex cone of Euclidean distance matrices (EDM cone); \ie,a candidate is an EDM if and only if its eigenspectrum belongs to a spectral cone for EDM^N.We will see spectral cones are not unique.In the chapter "EDM cone", we explain the geometric relationship betweenthe EDM cone, two positive semidefinite cones, and the elliptope.We illustrate geometric requirements, in particular, for projection of a candidate matrixon a positive semidefinite cone that establish its membership to the EDM cone. The faces of the EDM cone are described,but still open is the question whether all its faces are exposed as they are for the positive semidefinite cone.The classic Schoenberg criterion, relating EDM and positive semidefinite cones, isrevealed to be a discretized membership relation (a generalized inequality, a new Farkas''''''''-like lemma)between the EDM cone and its ordinary dual. A matrix criterion for membership to the dual EDM cone is derived thatis simpler than the Schoenberg criterion.We derive a new concise expression for the EDM cone and its dual involvingtwo subspaces and a positive semidefinite cone."Semidefinite programming" is reviewedwith particular attention to optimality conditionsof prototypical primal and dual conic programs,their interplay, and the perturbation method of rank reduction of optimal solutions(extant but not well-known).We show how to solve a ubiquitous platonic combinatorial optimization problem from linear algebra(the optimal Boolean solution x to Ax=b)via semidefinite program relaxation.A three-dimensional polyhedral analogue for the positive semidefinite cone of 3X3 symmetricmatrices is introduced; a tool for visualizing in 6 dimensions.In "EDM proximity"we explore methods of solution to a few fundamental and prevalentEuclidean distance matrix proximity problems; the problem of finding that Euclidean distance matrix closestto a given matrix in the Euclidean sense.We pay particular attention to the problem when compounded with rank minimization.We offer a new geometrical proof of a famous result discovered by Eckart \& Young in 1936 regarding Euclideanprojection of a point on a subset of the positive semidefinite cone comprising all positive semidefinite matriceshaving rank not exceeding a prescribed limit rho.We explain how this problem is transformed to a convex optimization for any rank rho.
History of Banach Spaces and Linear Operators
Author: Albrecht Pietsch
Publisher: Springer Science & Business Media
ISBN: 0817645969
Category : Mathematics
Languages : en
Pages : 877
Book Description
Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. Banach space theory is presented as a part of a broad mathematics context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, logic, etc. Equal emphasis is given to both spaces and operators. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor.
Publisher: Springer Science & Business Media
ISBN: 0817645969
Category : Mathematics
Languages : en
Pages : 877
Book Description
Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. Banach space theory is presented as a part of a broad mathematics context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, logic, etc. Equal emphasis is given to both spaces and operators. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor.