Author: Fabio Fagnani
Publisher: Springer
ISBN: 3319680226
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
This book deals with averaging dynamics, a paradigmatic example of network based dynamics in multi-agent systems. The book presents all the fundamental results on linear averaging dynamics, proposing a unified and updated viewpoint of many models and convergence results scattered in the literature. Starting from the classical evolution of the powers of a fixed stochastic matrix, the text then considers more general evolutions of products of a sequence of stochastic matrices, either deterministic or randomized. The theory needed for a full understanding of the models is constructed without assuming any knowledge of Markov chains or Perron–Frobenius theory. Jointly with their analysis of the convergence of averaging dynamics, the authors derive the properties of stochastic matrices. These properties are related to the topological structure of the associated graph, which, in the book’s perspective, represents the communication between agents. Special attention is paid to how these properties scale as the network grows in size. Finally, the understanding of stochastic matrices is applied to the study of other problems in multi-agent coordination: averaging with stubborn agents and estimation from relative measurements. The dynamics described in the book find application in the study of opinion dynamics in social networks, of information fusion in sensor networks, and of the collective motion of animal groups and teams of unmanned vehicles. Introduction to Averaging Dynamics over Networks will be of material interest to researchers in systems and control studying coordinated or distributed control, networked systems or multiagent systems and to graduate students pursuing courses in these areas.
Introduction to Averaging Dynamics over Networks
Author: Fabio Fagnani
Publisher: Springer
ISBN: 3319680226
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
This book deals with averaging dynamics, a paradigmatic example of network based dynamics in multi-agent systems. The book presents all the fundamental results on linear averaging dynamics, proposing a unified and updated viewpoint of many models and convergence results scattered in the literature. Starting from the classical evolution of the powers of a fixed stochastic matrix, the text then considers more general evolutions of products of a sequence of stochastic matrices, either deterministic or randomized. The theory needed for a full understanding of the models is constructed without assuming any knowledge of Markov chains or Perron–Frobenius theory. Jointly with their analysis of the convergence of averaging dynamics, the authors derive the properties of stochastic matrices. These properties are related to the topological structure of the associated graph, which, in the book’s perspective, represents the communication between agents. Special attention is paid to how these properties scale as the network grows in size. Finally, the understanding of stochastic matrices is applied to the study of other problems in multi-agent coordination: averaging with stubborn agents and estimation from relative measurements. The dynamics described in the book find application in the study of opinion dynamics in social networks, of information fusion in sensor networks, and of the collective motion of animal groups and teams of unmanned vehicles. Introduction to Averaging Dynamics over Networks will be of material interest to researchers in systems and control studying coordinated or distributed control, networked systems or multiagent systems and to graduate students pursuing courses in these areas.
Publisher: Springer
ISBN: 3319680226
Category : Technology & Engineering
Languages : en
Pages : 145
Book Description
This book deals with averaging dynamics, a paradigmatic example of network based dynamics in multi-agent systems. The book presents all the fundamental results on linear averaging dynamics, proposing a unified and updated viewpoint of many models and convergence results scattered in the literature. Starting from the classical evolution of the powers of a fixed stochastic matrix, the text then considers more general evolutions of products of a sequence of stochastic matrices, either deterministic or randomized. The theory needed for a full understanding of the models is constructed without assuming any knowledge of Markov chains or Perron–Frobenius theory. Jointly with their analysis of the convergence of averaging dynamics, the authors derive the properties of stochastic matrices. These properties are related to the topological structure of the associated graph, which, in the book’s perspective, represents the communication between agents. Special attention is paid to how these properties scale as the network grows in size. Finally, the understanding of stochastic matrices is applied to the study of other problems in multi-agent coordination: averaging with stubborn agents and estimation from relative measurements. The dynamics described in the book find application in the study of opinion dynamics in social networks, of information fusion in sensor networks, and of the collective motion of animal groups and teams of unmanned vehicles. Introduction to Averaging Dynamics over Networks will be of material interest to researchers in systems and control studying coordinated or distributed control, networked systems or multiagent systems and to graduate students pursuing courses in these areas.
Distributed Consensus with Visual Perception in Multi-Robot Systems
Author: Eduardo Montijano
Publisher: Springer
ISBN: 3319156993
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
This monograph introduces novel responses to the different problems that arise when multiple robots need to execute a task in cooperation, each robot in the team having a monocular camera as its primary input sensor. Its central proposition is that a consistent perception of the world is crucial for the good development of any multi-robot application. The text focuses on the high-level problem of cooperative perception by a multi-robot system: the idea that, depending on what each robot sees and its current situation, it will need to communicate these things to its fellows whenever possible to share what it has found and keep updated by them in its turn. However, in any realistic scenario, distributed solutions to this problem are not trivial and need to be addressed from as many angles as possible. Distributed Consensus with Visual Perception in Multi-Robot Systems covers a variety of related topics such as: • distributed consensus algorithms; • data association and robustness problems; • convergence speed; and • cooperative mapping. The book first puts forward algorithmic solutions to these problems and then supports them with empirical validations working with real images. It provides the reader with a deeper understanding of the problems associated to the perception of the world by a team of cooperating robots with onboard cameras. Academic researchers and graduate students working with multi-robot systems, or investigating problems of distributed control or computer vision and cooperative perception will find this book of material assistance with their studies.
Publisher: Springer
ISBN: 3319156993
Category : Technology & Engineering
Languages : en
Pages : 166
Book Description
This monograph introduces novel responses to the different problems that arise when multiple robots need to execute a task in cooperation, each robot in the team having a monocular camera as its primary input sensor. Its central proposition is that a consistent perception of the world is crucial for the good development of any multi-robot application. The text focuses on the high-level problem of cooperative perception by a multi-robot system: the idea that, depending on what each robot sees and its current situation, it will need to communicate these things to its fellows whenever possible to share what it has found and keep updated by them in its turn. However, in any realistic scenario, distributed solutions to this problem are not trivial and need to be addressed from as many angles as possible. Distributed Consensus with Visual Perception in Multi-Robot Systems covers a variety of related topics such as: • distributed consensus algorithms; • data association and robustness problems; • convergence speed; and • cooperative mapping. The book first puts forward algorithmic solutions to these problems and then supports them with empirical validations working with real images. It provides the reader with a deeper understanding of the problems associated to the perception of the world by a team of cooperating robots with onboard cameras. Academic researchers and graduate students working with multi-robot systems, or investigating problems of distributed control or computer vision and cooperative perception will find this book of material assistance with their studies.
Product of Random Stochastic Matrices and Distributed Averaging
Author: Behrouz Touri
Publisher: Springer Science & Business Media
ISBN: 3642280021
Category : Computers
Languages : en
Pages : 152
Book Description
The thesis deals with averaging dynamics in a multiagent networked system, which is a main mechanism for diffusing the information over such networks. It arises in a wide range of applications in engineered physical networks (such as mobile communication and sensor networks), as well as social and economic networks. The thesis provides in depth study of stability and other phenomena characterizing the limiting behavior of both deterministic and random averaging dynamics. By developing new concepts, and using the tools from dynamic system theory and non-negative matrix theory, several novel fundamental results are rigorously developed. These contribute significantly to our understanding of averaging dynamics as well as to non-negative random matrix theory. The exposition, although highly rigorous and technical, is elegant and insightful, and accompanied with numerous illustrative examples, which makes this thesis work easily accessible to those just entering this field and will also be much appreciated by experts in the field.
Publisher: Springer Science & Business Media
ISBN: 3642280021
Category : Computers
Languages : en
Pages : 152
Book Description
The thesis deals with averaging dynamics in a multiagent networked system, which is a main mechanism for diffusing the information over such networks. It arises in a wide range of applications in engineered physical networks (such as mobile communication and sensor networks), as well as social and economic networks. The thesis provides in depth study of stability and other phenomena characterizing the limiting behavior of both deterministic and random averaging dynamics. By developing new concepts, and using the tools from dynamic system theory and non-negative matrix theory, several novel fundamental results are rigorously developed. These contribute significantly to our understanding of averaging dynamics as well as to non-negative random matrix theory. The exposition, although highly rigorous and technical, is elegant and insightful, and accompanied with numerous illustrative examples, which makes this thesis work easily accessible to those just entering this field and will also be much appreciated by experts in the field.
Multi-agent Optimization
Author: Angelia Nedić
Publisher: Springer
ISBN: 3319971425
Category : Business & Economics
Languages : en
Pages : 317
Book Description
This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.
Publisher: Springer
ISBN: 3319971425
Category : Business & Economics
Languages : en
Pages : 317
Book Description
This book contains three well-written research tutorials that inform the graduate reader about the forefront of current research in multi-agent optimization. These tutorials cover topics that have not yet found their way in standard books and offer the reader the unique opportunity to be guided by major researchers in the respective fields. Multi-agent optimization, lying at the intersection of classical optimization, game theory, and variational inequality theory, is at the forefront of modern optimization and has recently undergone a dramatic development. It seems timely to provide an overview that describes in detail ongoing research and important trends. This book concentrates on Distributed Optimization over Networks; Differential Variational Inequalities; and Advanced Decomposition Algorithms for Multi-agent Systems. This book will appeal to both mathematicians and mathematically oriented engineers and will be the source of inspiration for PhD students and researchers.
Distributed Optimization-Based Control of Multi-Agent Networks in Complex Environments
Author: Minghui Zhu
Publisher: Springer
ISBN: 3319190725
Category : Technology & Engineering
Languages : en
Pages : 133
Book Description
This book offers a concise and in-depth exposition of specific algorithmic solutions for distributed optimization based control of multi-agent networks and their performance analysis. It synthesizes and analyzes distributed strategies for three collaborative tasks: distributed cooperative optimization, mobile sensor deployment and multi-vehicle formation control. The book integrates miscellaneous ideas and tools from dynamic systems, control theory, graph theory, optimization, game theory and Markov chains to address the particular challenges introduced by such complexities in the environment as topological dynamics, environmental uncertainties, and potential cyber-attack by human adversaries. The book is written for first- or second-year graduate students in a variety of engineering disciplines, including control, robotics, decision-making, optimization and algorithms and with backgrounds in aerospace engineering, computer science, electrical engineering, mechanical engineering and operations research. Researchers in these areas may also find the book useful as a reference.
Publisher: Springer
ISBN: 3319190725
Category : Technology & Engineering
Languages : en
Pages : 133
Book Description
This book offers a concise and in-depth exposition of specific algorithmic solutions for distributed optimization based control of multi-agent networks and their performance analysis. It synthesizes and analyzes distributed strategies for three collaborative tasks: distributed cooperative optimization, mobile sensor deployment and multi-vehicle formation control. The book integrates miscellaneous ideas and tools from dynamic systems, control theory, graph theory, optimization, game theory and Markov chains to address the particular challenges introduced by such complexities in the environment as topological dynamics, environmental uncertainties, and potential cyber-attack by human adversaries. The book is written for first- or second-year graduate students in a variety of engineering disciplines, including control, robotics, decision-making, optimization and algorithms and with backgrounds in aerospace engineering, computer science, electrical engineering, mechanical engineering and operations research. Researchers in these areas may also find the book useful as a reference.
Distributed Consensus in Multi-vehicle Cooperative Control
Author: Wei Ren
Publisher: Springer Science & Business Media
ISBN: 1848000154
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
Assuming only neighbor-neighbor interaction among vehicles, this monograph develops distributed consensus strategies that ensure that the information states of all vehicles in a network converge to a common value. Readers learn to deal with groups of autonomous vehicles in aerial, terrestrial, and submarine environments. Plus, they get the tools needed to overcome impaired communication by using constantly updated neighbor-neighbor interchange.
Publisher: Springer Science & Business Media
ISBN: 1848000154
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
Assuming only neighbor-neighbor interaction among vehicles, this monograph develops distributed consensus strategies that ensure that the information states of all vehicles in a network converge to a common value. Readers learn to deal with groups of autonomous vehicles in aerial, terrestrial, and submarine environments. Plus, they get the tools needed to overcome impaired communication by using constantly updated neighbor-neighbor interchange.
Convex Optimization in Signal Processing and Communications
Author: Daniel P. Palomar
Publisher: Cambridge University Press
ISBN: 0521762227
Category : Computers
Languages : en
Pages : 513
Book Description
Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.
Publisher: Cambridge University Press
ISBN: 0521762227
Category : Computers
Languages : en
Pages : 513
Book Description
Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.
Automata, Languages and Programming
Author: Luca Aceto
Publisher: Springer Science & Business Media
ISBN: 3642220118
Category : Computers
Languages : en
Pages : 689
Book Description
The two-volume set LNCS 6755 and LNCS 6756 constitutes the refereed proceedings of the 38th International Colloquium on Automata, Languages and Programming, ICALP 2011, held in Zürich, Switzerland, in July 2011. The 114 revised full papers (68 papers for track A, 29 for track B, and 17 for track C) presented together with 4 invited talks, 3 best student papers, and 3 best papers were carefully reviewed and selected from a total of 398 submissions. The papers are grouped in three major tracks on algorithms, complexity and games; on logic, semantics, automata, and theory of programming; as well as on foundations of networked computation: models, algorithms and information management.
Publisher: Springer Science & Business Media
ISBN: 3642220118
Category : Computers
Languages : en
Pages : 689
Book Description
The two-volume set LNCS 6755 and LNCS 6756 constitutes the refereed proceedings of the 38th International Colloquium on Automata, Languages and Programming, ICALP 2011, held in Zürich, Switzerland, in July 2011. The 114 revised full papers (68 papers for track A, 29 for track B, and 17 for track C) presented together with 4 invited talks, 3 best student papers, and 3 best papers were carefully reviewed and selected from a total of 398 submissions. The papers are grouped in three major tracks on algorithms, complexity and games; on logic, semantics, automata, and theory of programming; as well as on foundations of networked computation: models, algorithms and information management.
Analytical and Computational Methods in Probability Theory
Author: Vladimir V. Rykov
Publisher: Springer
ISBN: 3319715046
Category : Computers
Languages : en
Pages : 551
Book Description
This book constitutes the refereed proceedings of the First International Conference on Analytical and Computational Methods in Probability Theory and its Applications, ACMPT 2017, held in Moscow, Russia, in October 2017. The 42 full papers presented were carefully reviewed and selected from 173 submissions. The conference program consisted of four main themes associated with significant contributions made by A.D.Soloviev. These are: Analytical methods in probability theory, Computational methods in probability theory, Asymptotical methods in probability theory, the history of mathematics.
Publisher: Springer
ISBN: 3319715046
Category : Computers
Languages : en
Pages : 551
Book Description
This book constitutes the refereed proceedings of the First International Conference on Analytical and Computational Methods in Probability Theory and its Applications, ACMPT 2017, held in Moscow, Russia, in October 2017. The 42 full papers presented were carefully reviewed and selected from 173 submissions. The conference program consisted of four main themes associated with significant contributions made by A.D.Soloviev. These are: Analytical methods in probability theory, Computational methods in probability theory, Asymptotical methods in probability theory, the history of mathematics.
Grid-based Nonlinear Estimation and Its Applications
Author: Bin Jia
Publisher: CRC Press
ISBN: 1351757407
Category : Mathematics
Languages : en
Pages : 198
Book Description
Grid-based Nonlinear Estimation and its Applications presents new Bayesian nonlinear estimation techniques developed in the last two decades. Grid-based estimation techniques are based on efficient and precise numerical integration rules to improve performance of the traditional Kalman filtering based estimation for nonlinear and uncertainty dynamic systems. The unscented Kalman filter, Gauss-Hermite quadrature filter, cubature Kalman filter, sparse-grid quadrature filter, and many other numerical grid-based filtering techniques have been introduced and compared in this book. Theoretical analysis and numerical simulations are provided to show the relationships and distinct features of different estimation techniques. To assist the exposition of the filtering concept, preliminary mathematical review is provided. In addition, rather than merely considering the single sensor estimation, multiple sensor estimation, including the centralized and decentralized estimation, is included. Different decentralized estimation strategies, including consensus, diffusion, and covariance intersection, are investigated. Diverse engineering applications, such as uncertainty propagation, target tracking, guidance, navigation, and control, are presented to illustrate the performance of different grid-based estimation techniques.
Publisher: CRC Press
ISBN: 1351757407
Category : Mathematics
Languages : en
Pages : 198
Book Description
Grid-based Nonlinear Estimation and its Applications presents new Bayesian nonlinear estimation techniques developed in the last two decades. Grid-based estimation techniques are based on efficient and precise numerical integration rules to improve performance of the traditional Kalman filtering based estimation for nonlinear and uncertainty dynamic systems. The unscented Kalman filter, Gauss-Hermite quadrature filter, cubature Kalman filter, sparse-grid quadrature filter, and many other numerical grid-based filtering techniques have been introduced and compared in this book. Theoretical analysis and numerical simulations are provided to show the relationships and distinct features of different estimation techniques. To assist the exposition of the filtering concept, preliminary mathematical review is provided. In addition, rather than merely considering the single sensor estimation, multiple sensor estimation, including the centralized and decentralized estimation, is included. Different decentralized estimation strategies, including consensus, diffusion, and covariance intersection, are investigated. Diverse engineering applications, such as uncertainty propagation, target tracking, guidance, navigation, and control, are presented to illustrate the performance of different grid-based estimation techniques.