Modelling and Control of Robot Manipulators

Modelling and Control of Robot Manipulators PDF Author: Lorenzo Sciavicco
Publisher: Springer Science & Business Media
ISBN: 1447104498
Category : Technology & Engineering
Languages : en
Pages : 391

Get Book Here

Book Description
Fundamental and technological topics are blended uniquely and developed clearly in nine chapters with a gradually increasing level of complexity. A wide variety of relevant problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained, step by step. Fundamental coverage includes: Kinematics; Statics and dynamics of manipulators; Trajectory planning and motion control in free space. Technological aspects include: Actuators; Sensors; Hardware/software control architectures; Industrial robot-control algorithms. Furthermore, established research results involving description of end-effector orientation, closed kinematic chains, kinematic redundancy and singularities, dynamic parameter identification, robust and adaptive control and force/motion control are provided. To provide readers with a homogeneous background, three appendices are included on: Linear algebra; Rigid-body mechanics; Feedback control. To acquire practical skill, more than 50 examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, more than 80 end-of-chapter exercises are proposed, and the book is accompanied by a solutions manual containing the MATLAB code for computer problems; this is available from the publisher free of charge to those adopting this work as a textbook for courses.

Modelling and Control of Robot Manipulators

Modelling and Control of Robot Manipulators PDF Author: Lorenzo Sciavicco
Publisher: Springer Science & Business Media
ISBN: 1447104498
Category : Technology & Engineering
Languages : en
Pages : 391

Get Book Here

Book Description
Fundamental and technological topics are blended uniquely and developed clearly in nine chapters with a gradually increasing level of complexity. A wide variety of relevant problems is raised throughout, and the proper tools to find engineering-oriented solutions are introduced and explained, step by step. Fundamental coverage includes: Kinematics; Statics and dynamics of manipulators; Trajectory planning and motion control in free space. Technological aspects include: Actuators; Sensors; Hardware/software control architectures; Industrial robot-control algorithms. Furthermore, established research results involving description of end-effector orientation, closed kinematic chains, kinematic redundancy and singularities, dynamic parameter identification, robust and adaptive control and force/motion control are provided. To provide readers with a homogeneous background, three appendices are included on: Linear algebra; Rigid-body mechanics; Feedback control. To acquire practical skill, more than 50 examples and case studies are carefully worked out and interwoven through the text, with frequent resort to simulation. In addition, more than 80 end-of-chapter exercises are proposed, and the book is accompanied by a solutions manual containing the MATLAB code for computer problems; this is available from the publisher free of charge to those adopting this work as a textbook for courses.

Dynamics and Control of Robotic Manipulators with Contact and Friction

Dynamics and Control of Robotic Manipulators with Contact and Friction PDF Author: Shiping Liu
Publisher: John Wiley & Sons
ISBN: 1119422485
Category : Technology & Engineering
Languages : en
Pages : 266

Get Book Here

Book Description
A comprehensive guide to the friction, contact and impact on robot control and force feedback mechanism Dynamics and Control of Robotic Manipulators with Contact and Friction offers an authoritative guide to the basic principles of robot dynamics and control with a focus on contact and friction. The authors discuss problems in interaction between human and real or virtual robot where dynamics with friction and contact are relevant. The book fills a void in the literature with a need for a text that considers the contact and friction generated in robot joints during their movements. Designed as a practical resource, the text provides the information needed for task planning in view of contact, impact and friction for the designer of a robot control system for high accuracy and long durability. The authors include a review of the most up-to-date advancements in robot dynamics and control. It contains a comprehensive resource to the effective design and fabrication of robot systems and components for engineering and scientific purposes. This important guide: Offers a comprehensive reference with systematic treatment and a unified framework Includes simulation and experiments used in dynamics and control of robot considering contact, impact and friction Discusses the most current tribology methodology used to treat the multiple–scale effects Contains valuable descriptions of experiments and software used Presents illustrative accounts on the methods employed to handle friction in the closed loop, including the principles, implementation, application scope, merits and demerits Offers a cohesive treatment that covers tribology and multi-scales, multi-physics and nonlinear stochastic dynamics control Written for graduate students of robotics, mechatronics, mechanical engineering, tracking control and practicing professionals and industrial researchers, Dynamics and Control of Robotic Manipulators with Contact and Friction offers a review to effective design and fabrication of stable and durable robot system and components.

Control Dynamics of Robotic Manipulators

Control Dynamics of Robotic Manipulators PDF Author: J Skowronski
Publisher: Academic Press
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book Here

Book Description
Control Dynamics of Robotic Manipulators deals with both theory and mechanics of control and systems dynamics used in robotic movements. The book discusses mechanical models of robot manipulators in relation to modular RP-unit manipulators, multiple mechanical system (Cartesian Model), or generalized coordinates (Lagrangian Model). The text also describes equations used to determine the force characteristics, energy, and power required in manipulators. For example, damping forces dissipate energy caused by dry friction or viscous damping at mechanical joints due to slips and sheer effects on surfaces. Other examples are oil, water, and air resistance in the environment of the manipulator, as well as damping in links caused by microscopic interface effects. Demands for high-speed and high-accuracy in manipulators require sturdiness in control against variations in the system parameter. The book cites a situation where the manipulator works in a "hot cell" and must be controlled remotely. The text also tackles the avoidance of obstacles by nonvisual means by referring to the works of Lozano, Perez and Wesley, and of Reibert and Horn. The text is useful for students of civil, structural, and mechanical engineering. It will also profit technicians of automatic, telecontrol, and designers of industrial machinery.

Adaptive Control of Robot Manipulators

Adaptive Control of Robot Manipulators PDF Author: An-Chyau Huang
Publisher: World Scientific
ISBN: 9814307424
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
This book introduces an unified function approximation approach to the control of uncertain robot manipulators containing general uncertainties. It works for free space tracking control as well as compliant motion control. It is applicable to the rigid robot and the flexible joint robot. Even with actuator dynamics, the unified approach is still feasible. All these features make the book stand out from other existing publications.

Model-Based Control of a Robot Manipulator

Model-Based Control of a Robot Manipulator PDF Author: Chae H. An
Publisher: MIT Press (MA)
ISBN: 9780262511575
Category : Computers
Languages : en
Pages : 233

Get Book Here

Book Description
The first integrated treatment of many of the most important recent developments in using detailed dynamic models of robots to improve their control.

Dynamics and Control of Robotic Systems

Dynamics and Control of Robotic Systems PDF Author: Andrew J. Kurdila
Publisher: John Wiley & Sons
ISBN: 1119524903
Category : Technology & Engineering
Languages : en
Pages : 518

Get Book Here

Book Description
A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.

Robot Manipulators

Robot Manipulators PDF Author: Richard P. Paul
Publisher: Richard Paul
ISBN: 9780262160827
Category : Computers
Languages : en
Pages : 298

Get Book Here

Book Description
Homogeneous transformations; Kinematic equations; Solving kinematic equations; Differential relationships; Motion trajectories; Dynamics; Control; Static forces; Compliance; Programming.

Robot Manipulator Control

Robot Manipulator Control PDF Author: Frank L. Lewis
Publisher: CRC Press
ISBN: 9780203026953
Category : Technology & Engineering
Languages : en
Pages : 646

Get Book Here

Book Description
Robot Manipulator Control offers a complete survey of control systems for serial-link robot arms and acknowledges how robotic device performance hinges upon a well-developed control system. Containing over 750 essential equations, this thoroughly up-to-date Second Edition, the book explicates theoretical and mathematical requisites for controls design and summarizes current techniques in computer simulation and implementation of controllers. It also addresses procedures and issues in computed-torque, robust, adaptive, neural network, and force control. New chapters relay practical information on commercial robot manipulators and devices and cutting-edge methods in neural network control.

Modern Robotics

Modern Robotics PDF Author: Kevin M. Lynch
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545

Get Book Here

Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.

Robot Force Control

Robot Force Control PDF Author: Bruno Siciliano
Publisher: Springer Science & Business Media
ISBN: 1461544319
Category : Technology & Engineering
Languages : en
Pages : 154

Get Book Here

Book Description
One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.