Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2180
Book Description
U.S. Government Research Reports
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2180
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 2180
Book Description
Applied Mechanics Reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 620
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 620
Book Description
Technical Publications Announcements with Indexes
Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 796
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 796
Book Description
Technical Translations
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 638
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 638
Book Description
Technical Publications Announcements
Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category :
Languages : en
Pages : 672
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 672
Book Description
Bibliography of Scientific and Industrial Reports
Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 716
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 716
Book Description
Journal of Research of the National Bureau of Standards
Author: United States. National Bureau of Standards
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 182
Book Description
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 182
Book Description
Analysis of Weakly Compressible Turbulence Using Symmetry Methods and Direct Numerical Simulation
Author: Raphael Gotthard Harald Arlitt
Publisher: Cuvillier Verlag
ISBN: 3865373461
Category :
Languages : en
Pages : 221
Book Description
Publisher: Cuvillier Verlag
ISBN: 3865373461
Category :
Languages : en
Pages : 221
Book Description
Classical and Modern Engineering Methods in Fluid Flow and Heat Transfer
Author: Abram Dorfman
Publisher: Momentum Press
ISBN: 1606502719
Category : Technology & Engineering
Languages : en
Pages : 351
Book Description
This book presents contemporary theoretical methods in fluid flow and heat transfer, emphasizing principles of investigation and modeling of natural phenomena and engineering processes. It is organized into four parts and 12 chapters presenting classical and modern methods. Following the classical methods in Part 1, Part 2 offers in-depth coverage of analytical conjugate methods in convective heat transfer and peristaltic flow. Part 3 explains recent developments in numerical methods including new approaches for simulation of turbulence by direct solution of Navier-Stokes equations. Part 4 provides a wealth of applications in industrial systems, technology processes, biology, and medicine. More than a hundred examples show the applicability of the methods in such areas as nuclear reactors, aerospace, crystal growth, turbine blades, electronics packaging, optical fiber coating, wire casting, blood flow, urinary problems, and food processing. Intended for practicing engineers and students, the book balances strong formulation of problems with detailed explanations of definitions and terminology. Author comments give attention to special terms like singularity, order of magnitude, flow stability, and nonisothermicity characteristics. More than 400 exercises and questions are offered, many of which divide derivations between you and the author. For these exercises, the author describes the solution method and the results in the text, but you are directed to complete specific portions of the solutions. You then have a choice to accept the results or to further explore the underlying problem. Extensive references are provided for further study.
Publisher: Momentum Press
ISBN: 1606502719
Category : Technology & Engineering
Languages : en
Pages : 351
Book Description
This book presents contemporary theoretical methods in fluid flow and heat transfer, emphasizing principles of investigation and modeling of natural phenomena and engineering processes. It is organized into four parts and 12 chapters presenting classical and modern methods. Following the classical methods in Part 1, Part 2 offers in-depth coverage of analytical conjugate methods in convective heat transfer and peristaltic flow. Part 3 explains recent developments in numerical methods including new approaches for simulation of turbulence by direct solution of Navier-Stokes equations. Part 4 provides a wealth of applications in industrial systems, technology processes, biology, and medicine. More than a hundred examples show the applicability of the methods in such areas as nuclear reactors, aerospace, crystal growth, turbine blades, electronics packaging, optical fiber coating, wire casting, blood flow, urinary problems, and food processing. Intended for practicing engineers and students, the book balances strong formulation of problems with detailed explanations of definitions and terminology. Author comments give attention to special terms like singularity, order of magnitude, flow stability, and nonisothermicity characteristics. More than 400 exercises and questions are offered, many of which divide derivations between you and the author. For these exercises, the author describes the solution method and the results in the text, but you are directed to complete specific portions of the solutions. You then have a choice to accept the results or to further explore the underlying problem. Extensive references are provided for further study.
Fluid Mechanics for Engineers
Author: Meinhard T. Schobeiri
Publisher: Springer Science & Business Media
ISBN: 3642115942
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.
Publisher: Springer Science & Business Media
ISBN: 3642115942
Category : Technology & Engineering
Languages : en
Pages : 517
Book Description
The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.