Author: FLORENTIN SMARANDACHE
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 28
Book Description
Teoria Numerelor reprezinta pentru mine o pasiune. Rezultatele expuse mai departe constituie rodul catorva ani buni de cercetari si cautari.
Contributii la studiul unor functii si conjecturi in Teoria Numerelor
Author: FLORENTIN SMARANDACHE
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 28
Book Description
Teoria Numerelor reprezinta pentru mine o pasiune. Rezultatele expuse mai departe constituie rodul catorva ani buni de cercetari si cautari.
Publisher: Infinite Study
ISBN:
Category :
Languages : en
Pages : 28
Book Description
Teoria Numerelor reprezinta pentru mine o pasiune. Rezultatele expuse mai departe constituie rodul catorva ani buni de cercetari si cautari.
Collected Papers, Vol. II
Author: Florentin Smarandache
Publisher: Infinite Study
ISBN: 193123342X
Category :
Languages : en
Pages : 202
Book Description
Publisher: Infinite Study
ISBN: 193123342X
Category :
Languages : en
Pages : 202
Book Description
Theory of Parallels
Author: Nikolaj Ivanovič Lobačevskij
Publisher: Independently Published
ISBN: 9781099688812
Category :
Languages : en
Pages : 52
Book Description
LOBACHEVSKY was the first man ever to publish a non-Euclidean geometry. Of the immortal essay now first appearing in English Gauss said, "The author has treated the matter with a master-hand and in the true geometer's spirit. I think I ought to call your attention to this book, whose perusal cannot fail to give you the most vivid pleasure." Clifford says, "It is quite simple, merely Euclid without the vicious assumption, but the way things come out of one another is quite lovely." * * * "What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid." Says Sylvester, "In Quaternions the example has been given of Algebra released from the yoke of the commutative principle of multiplication - an emancipation somewhat akin to Lobachevsky's of Geometry from Euclid's noted empirical axiom." Cayley says, "It is well known that Euclid's twelfth axiom, even in Playfair's form of it, has been considered as needing demonstration; and that Lobachevsky constructed a perfectly consistent theory, where- in this axiom was assumed not to hold good, or say a system of non- Euclidean plane geometry. There is a like system of non-Euclidean solid geometry." GEORGE BRUCE HALSTED. 2407 San Marcos Street, Austin, Texas. * * * *From the TRANSLATOR'S INTRODUCTION. "Prove all things, hold fast that which is good," does not mean demonstrate everything. From nothing assumed, nothing can be proved. "Geometry without axioms," was a book which went through several editions, and still has historical value. But now a volume with such a title would, without opening it, be set down as simply the work of a paradoxer. The set of axioms far the most influential in the intellectual history of the world was put together in Egypt; but really it owed nothing to the Egyptian race, drew nothing from the boasted lore of Egypt's priests. The Papyrus of the Rhind, belonging to the British Museum, but given to the world by the erudition of a German Egyptologist, Eisenlohr, and a German historian of mathematics, Cantor, gives us more knowledge of the state of mathematics in ancient Egypt than all else previously accessible to the modern world. Its whole testimony con- firms with overwhelming force the position that Geometry as a science, strict and self-conscious deductive reasoning, was created by the subtle intellect of the same race whose bloom in art still overawes us in the Venus of Milo, the Apollo Belvidere, the Laocoon. In a geometry occur the most noted set of axioms, the geometry of Euclid, a pure Greek, professor at the University of Alexandria. Not only at its very birth did this typical product of the Greek genius assume sway as ruler in the pure sciences, not only does its first efflorescence carry us through the splendid days of Theon and Hypatia, but unlike the latter, fanatics cannot murder it; that dismal flood, the dark ages, cannot drown it. Like the phoenix of its native Egypt, it rises with the new birth of culture. An Anglo-Saxon, Adelard of Bath, finds it clothed in Arabic vestments in the land of the Alhambra. Then clothed in Latin, it and the new-born printing press confer honor on each other. Finally back again in its original Greek, it is published first in queenly Basel, then in stately Oxford. The latest edition in Greek is from Leipsic's learned presses.
Publisher: Independently Published
ISBN: 9781099688812
Category :
Languages : en
Pages : 52
Book Description
LOBACHEVSKY was the first man ever to publish a non-Euclidean geometry. Of the immortal essay now first appearing in English Gauss said, "The author has treated the matter with a master-hand and in the true geometer's spirit. I think I ought to call your attention to this book, whose perusal cannot fail to give you the most vivid pleasure." Clifford says, "It is quite simple, merely Euclid without the vicious assumption, but the way things come out of one another is quite lovely." * * * "What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid." Says Sylvester, "In Quaternions the example has been given of Algebra released from the yoke of the commutative principle of multiplication - an emancipation somewhat akin to Lobachevsky's of Geometry from Euclid's noted empirical axiom." Cayley says, "It is well known that Euclid's twelfth axiom, even in Playfair's form of it, has been considered as needing demonstration; and that Lobachevsky constructed a perfectly consistent theory, where- in this axiom was assumed not to hold good, or say a system of non- Euclidean plane geometry. There is a like system of non-Euclidean solid geometry." GEORGE BRUCE HALSTED. 2407 San Marcos Street, Austin, Texas. * * * *From the TRANSLATOR'S INTRODUCTION. "Prove all things, hold fast that which is good," does not mean demonstrate everything. From nothing assumed, nothing can be proved. "Geometry without axioms," was a book which went through several editions, and still has historical value. But now a volume with such a title would, without opening it, be set down as simply the work of a paradoxer. The set of axioms far the most influential in the intellectual history of the world was put together in Egypt; but really it owed nothing to the Egyptian race, drew nothing from the boasted lore of Egypt's priests. The Papyrus of the Rhind, belonging to the British Museum, but given to the world by the erudition of a German Egyptologist, Eisenlohr, and a German historian of mathematics, Cantor, gives us more knowledge of the state of mathematics in ancient Egypt than all else previously accessible to the modern world. Its whole testimony con- firms with overwhelming force the position that Geometry as a science, strict and self-conscious deductive reasoning, was created by the subtle intellect of the same race whose bloom in art still overawes us in the Venus of Milo, the Apollo Belvidere, the Laocoon. In a geometry occur the most noted set of axioms, the geometry of Euclid, a pure Greek, professor at the University of Alexandria. Not only at its very birth did this typical product of the Greek genius assume sway as ruler in the pure sciences, not only does its first efflorescence carry us through the splendid days of Theon and Hypatia, but unlike the latter, fanatics cannot murder it; that dismal flood, the dark ages, cannot drown it. Like the phoenix of its native Egypt, it rises with the new birth of culture. An Anglo-Saxon, Adelard of Bath, finds it clothed in Arabic vestments in the land of the Alhambra. Then clothed in Latin, it and the new-born printing press confer honor on each other. Finally back again in its original Greek, it is published first in queenly Basel, then in stately Oxford. The latest edition in Greek is from Leipsic's learned presses.
The Higher Arithmetic
Author: Harold Davenport
Publisher:
ISBN: 9780511650161
Category : Mathematics
Languages : en
Pages : 251
Book Description
Classic text in number theory; this eighth edition contains new material on primality testing written by J. H. Davenport.
Publisher:
ISBN: 9780511650161
Category : Mathematics
Languages : en
Pages : 251
Book Description
Classic text in number theory; this eighth edition contains new material on primality testing written by J. H. Davenport.
An Introduction to the Theory of Numbers
Author: Ivan Matveevich Vinogradov
Publisher:
ISBN:
Category : Number theory
Languages : en
Pages : 174
Book Description
Publisher:
ISBN:
Category : Number theory
Languages : en
Pages : 174
Book Description
Webster's New World College Dictionary
Author: Victoria Neufeldt
Publisher: MacMillan Reference Library
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 1640
Book Description
Offers hundreds of new words and meanings, including many unique to American English, with thousands of examples of current usage.
Publisher: MacMillan Reference Library
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 1640
Book Description
Offers hundreds of new words and meanings, including many unique to American English, with thousands of examples of current usage.