Author: Anurag Jayswal
Publisher: CRC Press
ISBN: 1000648982
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
The proposed book provides a comprehensive coverage of theory and methods in the areas of continuous optimization and variational inequality. It describes theory and solution methods for optimization with smooth and non-smooth functions, for variational inequalities with single-valued and multivalued mappings, and for related classes such as mixed variational inequalities, complementarity problems, and general equilibrium problems. The emphasis is made on revealing generic properties of these problems that allow creation of efficient solution methods. Salient Features The book presents a deep, wide-ranging introduction to the theory of the optimal control of processes governed by optimization techniques and variational inequality Several solution methods are provided which will help the reader to develop various optimization tools for real-life problems which can be modeled by optimization techniques involving linear and nonlinear functions. The book focuses on most recent contributions in the nonlinear phenomena, which can appear in various areas of human activities. This book also presents relevant mathematics clearly and simply to help solve real life problems in diverse fields such as mechanical engineering, management, control behavior, traffic signal, industry, etc. This book is aimed primarily at advanced undergraduates and graduate students pursuing computer engineering and electrical engineering courses. Researchers, academicians and industry people will also find this book useful.
Continuous Optimization and Variational Inequalities
Author: Anurag Jayswal
Publisher: CRC Press
ISBN: 1000648982
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
The proposed book provides a comprehensive coverage of theory and methods in the areas of continuous optimization and variational inequality. It describes theory and solution methods for optimization with smooth and non-smooth functions, for variational inequalities with single-valued and multivalued mappings, and for related classes such as mixed variational inequalities, complementarity problems, and general equilibrium problems. The emphasis is made on revealing generic properties of these problems that allow creation of efficient solution methods. Salient Features The book presents a deep, wide-ranging introduction to the theory of the optimal control of processes governed by optimization techniques and variational inequality Several solution methods are provided which will help the reader to develop various optimization tools for real-life problems which can be modeled by optimization techniques involving linear and nonlinear functions. The book focuses on most recent contributions in the nonlinear phenomena, which can appear in various areas of human activities. This book also presents relevant mathematics clearly and simply to help solve real life problems in diverse fields such as mechanical engineering, management, control behavior, traffic signal, industry, etc. This book is aimed primarily at advanced undergraduates and graduate students pursuing computer engineering and electrical engineering courses. Researchers, academicians and industry people will also find this book useful.
Publisher: CRC Press
ISBN: 1000648982
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
The proposed book provides a comprehensive coverage of theory and methods in the areas of continuous optimization and variational inequality. It describes theory and solution methods for optimization with smooth and non-smooth functions, for variational inequalities with single-valued and multivalued mappings, and for related classes such as mixed variational inequalities, complementarity problems, and general equilibrium problems. The emphasis is made on revealing generic properties of these problems that allow creation of efficient solution methods. Salient Features The book presents a deep, wide-ranging introduction to the theory of the optimal control of processes governed by optimization techniques and variational inequality Several solution methods are provided which will help the reader to develop various optimization tools for real-life problems which can be modeled by optimization techniques involving linear and nonlinear functions. The book focuses on most recent contributions in the nonlinear phenomena, which can appear in various areas of human activities. This book also presents relevant mathematics clearly and simply to help solve real life problems in diverse fields such as mechanical engineering, management, control behavior, traffic signal, industry, etc. This book is aimed primarily at advanced undergraduates and graduate students pursuing computer engineering and electrical engineering courses. Researchers, academicians and industry people will also find this book useful.
Continuous Optimization and Variational Inequalities
Author: Anurag Jayswal
Publisher: CRC Press
ISBN: 1000648931
Category : Technology & Engineering
Languages : en
Pages : 379
Book Description
The proposed book provides a comprehensive coverage of theory and methods in the areas of continuous optimization and variational inequality. It describes theory and solution methods for optimization with smooth and non-smooth functions, for variational inequalities with single-valued and multivalued mappings, and for related classes such as mixed variational inequalities, complementarity problems, and general equilibrium problems. The emphasis is made on revealing generic properties of these problems that allow creation of efficient solution methods. Salient Features The book presents a deep, wide-ranging introduction to the theory of the optimal control of processes governed by optimization techniques and variational inequality Several solution methods are provided which will help the reader to develop various optimization tools for real-life problems which can be modeled by optimization techniques involving linear and nonlinear functions. The book focuses on most recent contributions in the nonlinear phenomena, which can appear in various areas of human activities. This book also presents relevant mathematics clearly and simply to help solve real life problems in diverse fields such as mechanical engineering, management, control behavior, traffic signal, industry, etc. This book is aimed primarily at advanced undergraduates and graduate students pursuing computer engineering and electrical engineering courses. Researchers, academicians and industry people will also find this book useful.
Publisher: CRC Press
ISBN: 1000648931
Category : Technology & Engineering
Languages : en
Pages : 379
Book Description
The proposed book provides a comprehensive coverage of theory and methods in the areas of continuous optimization and variational inequality. It describes theory and solution methods for optimization with smooth and non-smooth functions, for variational inequalities with single-valued and multivalued mappings, and for related classes such as mixed variational inequalities, complementarity problems, and general equilibrium problems. The emphasis is made on revealing generic properties of these problems that allow creation of efficient solution methods. Salient Features The book presents a deep, wide-ranging introduction to the theory of the optimal control of processes governed by optimization techniques and variational inequality Several solution methods are provided which will help the reader to develop various optimization tools for real-life problems which can be modeled by optimization techniques involving linear and nonlinear functions. The book focuses on most recent contributions in the nonlinear phenomena, which can appear in various areas of human activities. This book also presents relevant mathematics clearly and simply to help solve real life problems in diverse fields such as mechanical engineering, management, control behavior, traffic signal, industry, etc. This book is aimed primarily at advanced undergraduates and graduate students pursuing computer engineering and electrical engineering courses. Researchers, academicians and industry people will also find this book useful.
Asymptotic Cones and Functions in Optimization and Variational Inequalities
Author: Alfred Auslender
Publisher: Springer Science & Business Media
ISBN: 0387225900
Category : Mathematics
Languages : en
Pages : 259
Book Description
This systematic and comprehensive account of asymptotic sets and functions develops a broad and useful theory in the areas of optimization and variational inequalities. The central focus is on problems of handling unbounded situations, using solutions of a given problem in these classes, when for example standard compacity hypothesis is not present. This book will interest advanced graduate students, researchers, and practitioners of optimization theory, nonlinear programming, and applied mathematics.
Publisher: Springer Science & Business Media
ISBN: 0387225900
Category : Mathematics
Languages : en
Pages : 259
Book Description
This systematic and comprehensive account of asymptotic sets and functions develops a broad and useful theory in the areas of optimization and variational inequalities. The central focus is on problems of handling unbounded situations, using solutions of a given problem in these classes, when for example standard compacity hypothesis is not present. This book will interest advanced graduate students, researchers, and practitioners of optimization theory, nonlinear programming, and applied mathematics.
Nonsmooth Vector Functions and Continuous Optimization
Author: V. Jeyakumar
Publisher: Springer Science & Business Media
ISBN: 0387737170
Category : Mathematics
Languages : en
Pages : 277
Book Description
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.
Publisher: Springer Science & Business Media
ISBN: 0387737170
Category : Mathematics
Languages : en
Pages : 277
Book Description
Focusing on the study of nonsmooth vector functions, this book presents a comprehensive account of the calculus of generalized Jacobian matrices and their applications to continuous nonsmooth optimization problems, as well as variational inequalities in finite dimensions. The treatment is motivated by a desire to expose an elementary approach to nonsmooth calculus, using a set of matrices to replace the nonexistent Jacobian matrix of a continuous vector function.
Combined Relaxation Methods for Variational Inequalities
Author: Igor Konnov
Publisher: Springer Science & Business Media
ISBN: 3642568866
Category : Business & Economics
Languages : en
Pages : 190
Book Description
Variational inequalities proved to be a very useful and powerful tool for in vestigation and solution of many equilibrium type problems in Economics, Engineering, Operations Research and Mathematical Physics. In fact, varia tional inequalities for example provide a unifying framework for the study of such diverse problems as boundary value problems, price equilibrium prob lems and traffic network equilibrium problems. Besides, they are closely re lated with many general problems of Nonlinear Analysis, such as fixed point, optimization and complementarity problems. As a result, the theory and so lution methods for variational inequalities have been studied extensively, and considerable advances have been made in these areas. This book is devoted to a new general approach to constructing solution methods for variational inequalities, which was called the combined relax ation (CR) approach. This approach is based on combining, modifying and generalizing ideas contained in various relaxation methods. In fact, each com bined relaxation method has a two-level structure, i.e., a descent direction and a stepsize at each iteration are computed by finite relaxation procedures.
Publisher: Springer Science & Business Media
ISBN: 3642568866
Category : Business & Economics
Languages : en
Pages : 190
Book Description
Variational inequalities proved to be a very useful and powerful tool for in vestigation and solution of many equilibrium type problems in Economics, Engineering, Operations Research and Mathematical Physics. In fact, varia tional inequalities for example provide a unifying framework for the study of such diverse problems as boundary value problems, price equilibrium prob lems and traffic network equilibrium problems. Besides, they are closely re lated with many general problems of Nonlinear Analysis, such as fixed point, optimization and complementarity problems. As a result, the theory and so lution methods for variational inequalities have been studied extensively, and considerable advances have been made in these areas. This book is devoted to a new general approach to constructing solution methods for variational inequalities, which was called the combined relax ation (CR) approach. This approach is based on combining, modifying and generalizing ideas contained in various relaxation methods. In fact, each com bined relaxation method has a two-level structure, i.e., a descent direction and a stepsize at each iteration are computed by finite relaxation procedures.
Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models
Author: F. Giannessi
Publisher: Springer Science & Business Media
ISBN: 0306480263
Category : Mathematics
Languages : en
Pages : 304
Book Description
The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.
Publisher: Springer Science & Business Media
ISBN: 0306480263
Category : Mathematics
Languages : en
Pages : 304
Book Description
The aim of the book is to cover the three fundamental aspects of research in equilibrium problems: the statement problem and its formulation using mainly variational methods, its theoretical solution by means of classical and new variational tools, the calculus of solutions and applications in concrete cases. The book shows how many equilibrium problems follow a general law (the so-called user equilibrium condition). Such law allows us to express the problem in terms of variational inequalities. Variational inequalities provide a powerful methodology, by which existence and calculation of the solution can be obtained.
Duality in Optimization and Variational Inequalities
Author: C.j. Goh
Publisher: Taylor & Francis
ISBN: 9780415274791
Category : Mathematics
Languages : en
Pages : 344
Book Description
This comprehensive volume covers a wide range of duality topics ranging from simple ideas in network flows to complex issues in non-convex optimization and multicriteria problems. In addition, it examines duality in the context of variational inequalities and vector variational inequalities, as generalizations to optimization. Duality in Optimization and Variational Inequalities is intended for researchers and practitioners of optimization with the aim of enhancing their understanding of duality. It provides a wider appreciation of optimality conditions in various scenarios and under different assumptions. It will enable the reader to use duality to devise more effective computational methods, and to aid more meaningful interpretation of optimization and variational inequality problems.
Publisher: Taylor & Francis
ISBN: 9780415274791
Category : Mathematics
Languages : en
Pages : 344
Book Description
This comprehensive volume covers a wide range of duality topics ranging from simple ideas in network flows to complex issues in non-convex optimization and multicriteria problems. In addition, it examines duality in the context of variational inequalities and vector variational inequalities, as generalizations to optimization. Duality in Optimization and Variational Inequalities is intended for researchers and practitioners of optimization with the aim of enhancing their understanding of duality. It provides a wider appreciation of optimality conditions in various scenarios and under different assumptions. It will enable the reader to use duality to devise more effective computational methods, and to aid more meaningful interpretation of optimization and variational inequality problems.
Convex Analysis and Variational Problems
Author: Ivar Ekeland
Publisher: SIAM
ISBN: 9781611971088
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.
Publisher: SIAM
ISBN: 9781611971088
Category : Mathematics
Languages : en
Pages : 414
Book Description
This book contains different developments of infinite dimensional convex programming in the context of convex analysis, including duality, minmax and Lagrangians, and convexification of nonconvex optimization problems in the calculus of variations (infinite dimension). It also includes the theory of convex duality applied to partial differential equations; no other reference presents this in a systematic way. The minmax theorems contained in this book have many useful applications, in particular the robust control of partial differential equations in finite time horizon. First published in English in 1976, this SIAM Classics in Applied Mathematics edition contains the original text along with a new preface and some additional references.
Vector Variational Inequalities and Vector Optimization
Author: Qamrul Hasan Ansari
Publisher: Springer
ISBN: 3319630490
Category : Business & Economics
Languages : en
Pages : 517
Book Description
This book presents the mathematical theory of vector variational inequalities and their relations with vector optimization problems. It is the first-ever book to introduce well-posedness and sensitivity analysis for vector equilibrium problems. The first chapter provides basic notations and results from the areas of convex analysis, functional analysis, set-valued analysis and fixed-point theory for set-valued maps, as well as a brief introduction to variational inequalities and equilibrium problems. Chapter 2 presents an overview of analysis over cones, including continuity and convexity of vector-valued functions. The book then shifts its focus to solution concepts and classical methods in vector optimization. It describes the formulation of vector variational inequalities and their applications to vector optimization, followed by separate chapters on linear scalarization, nonsmooth and generalized vector variational inequalities. Lastly, the book introduces readers to vector equilibrium problems and generalized vector equilibrium problems. Written in an illustrative and reader-friendly way, the book offers a valuable resource for all researchers whose work involves optimization and vector optimization.
Publisher: Springer
ISBN: 3319630490
Category : Business & Economics
Languages : en
Pages : 517
Book Description
This book presents the mathematical theory of vector variational inequalities and their relations with vector optimization problems. It is the first-ever book to introduce well-posedness and sensitivity analysis for vector equilibrium problems. The first chapter provides basic notations and results from the areas of convex analysis, functional analysis, set-valued analysis and fixed-point theory for set-valued maps, as well as a brief introduction to variational inequalities and equilibrium problems. Chapter 2 presents an overview of analysis over cones, including continuity and convexity of vector-valued functions. The book then shifts its focus to solution concepts and classical methods in vector optimization. It describes the formulation of vector variational inequalities and their applications to vector optimization, followed by separate chapters on linear scalarization, nonsmooth and generalized vector variational inequalities. Lastly, the book introduces readers to vector equilibrium problems and generalized vector equilibrium problems. Written in an illustrative and reader-friendly way, the book offers a valuable resource for all researchers whose work involves optimization and vector optimization.
Optimal Quadratic Programming Algorithms
Author: Zdenek Dostál
Publisher: Springer Science & Business Media
ISBN: 0387848061
Category : Mathematics
Languages : en
Pages : 293
Book Description
Quadratic programming (QP) is one advanced mathematical technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This book presents recently developed algorithms for solving large QP problems and focuses on algorithms which are, in a sense optimal, i.e., they can solve important classes of problems at a cost proportional to the number of unknowns. For each algorithm presented, the book details its classical predecessor, describes its drawbacks, introduces modifications that improve its performance, and demonstrates these improvements through numerical experiments. This self-contained monograph can serve as an introductory text on quadratic programming for graduate students and researchers. Additionally, since the solution of many nonlinear problems can be reduced to the solution of a sequence of QP problems, it can also be used as a convenient introduction to nonlinear programming.
Publisher: Springer Science & Business Media
ISBN: 0387848061
Category : Mathematics
Languages : en
Pages : 293
Book Description
Quadratic programming (QP) is one advanced mathematical technique that allows for the optimization of a quadratic function in several variables in the presence of linear constraints. This book presents recently developed algorithms for solving large QP problems and focuses on algorithms which are, in a sense optimal, i.e., they can solve important classes of problems at a cost proportional to the number of unknowns. For each algorithm presented, the book details its classical predecessor, describes its drawbacks, introduces modifications that improve its performance, and demonstrates these improvements through numerical experiments. This self-contained monograph can serve as an introductory text on quadratic programming for graduate students and researchers. Additionally, since the solution of many nonlinear problems can be reduced to the solution of a sequence of QP problems, it can also be used as a convenient introduction to nonlinear programming.