Author: Iqbal Sarker
Publisher: Springer Nature
ISBN: 3030885305
Category : Computers
Languages : en
Pages : 164
Book Description
This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.
Context-Aware Machine Learning and Mobile Data Analytics
Author: Iqbal Sarker
Publisher: Springer Nature
ISBN: 3030885305
Category : Computers
Languages : en
Pages : 164
Book Description
This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.
Publisher: Springer Nature
ISBN: 3030885305
Category : Computers
Languages : en
Pages : 164
Book Description
This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.
Machine Learning for Future Wireless Communications
Author: Fa-Long Luo
Publisher: John Wiley & Sons
ISBN: 1119562252
Category : Technology & Engineering
Languages : en
Pages : 490
Book Description
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
Publisher: John Wiley & Sons
ISBN: 1119562252
Category : Technology & Engineering
Languages : en
Pages : 490
Book Description
A comprehensive review to the theory, application and research of machine learning for future wireless communications In one single volume, Machine Learning for Future Wireless Communications provides a comprehensive and highly accessible treatment to the theory, applications and current research developments to the technology aspects related to machine learning for wireless communications and networks. The technology development of machine learning for wireless communications has grown explosively and is one of the biggest trends in related academic, research and industry communities. Deep neural networks-based machine learning technology is a promising tool to attack the big challenge in wireless communications and networks imposed by the increasing demands in terms of capacity, coverage, latency, efficiency flexibility, compatibility, quality of experience and silicon convergence. The author – a noted expert on the topic – covers a wide range of topics including system architecture and optimization, physical-layer and cross-layer processing, air interface and protocol design, beamforming and antenna configuration, network coding and slicing, cell acquisition and handover, scheduling and rate adaption, radio access control, smart proactive caching and adaptive resource allocations. Uniquely organized into three categories: Spectrum Intelligence, Transmission Intelligence and Network Intelligence, this important resource: Offers a comprehensive review of the theory, applications and current developments of machine learning for wireless communications and networks Covers a range of topics from architecture and optimization to adaptive resource allocations Reviews state-of-the-art machine learning based solutions for network coverage Includes an overview of the applications of machine learning algorithms in future wireless networks Explores flexible backhaul and front-haul, cross-layer optimization and coding, full-duplex radio, digital front-end (DFE) and radio-frequency (RF) processing Written for professional engineers, researchers, scientists, manufacturers, network operators, software developers and graduate students, Machine Learning for Future Wireless Communications presents in 21 chapters a comprehensive review of the topic authored by an expert in the field.
Data Management in Pervasive Systems
Author: Francesco Colace
Publisher: Springer
ISBN: 3319200623
Category : Computers
Languages : en
Pages : 380
Book Description
This book contributes to illustrating the methodological and technological issues of data management in Pervasive Systems by using the DataBenc project as the running case study for a variety of research contributions: sensor data management, user-originated data operation and reasoning, multimedia data management, data analytics and reasoning for event detection and decision making, context modelling and control, automatic data and service tailoring for personalization and recommendation. The book is organized into the following main parts: i) multimedia information management; ii) sensor data streams and storage; iii) social networks as information sources; iv) context awareness and personalization. The case study is used throughout the book as a reference example.
Publisher: Springer
ISBN: 3319200623
Category : Computers
Languages : en
Pages : 380
Book Description
This book contributes to illustrating the methodological and technological issues of data management in Pervasive Systems by using the DataBenc project as the running case study for a variety of research contributions: sensor data management, user-originated data operation and reasoning, multimedia data management, data analytics and reasoning for event detection and decision making, context modelling and control, automatic data and service tailoring for personalization and recommendation. The book is organized into the following main parts: i) multimedia information management; ii) sensor data streams and storage; iii) social networks as information sources; iv) context awareness and personalization. The case study is used throughout the book as a reference example.
Machine Learning Approach for Cloud Data Analytics in IoT
Author: Sachi Nandan Mohanty
Publisher: John Wiley & Sons
ISBN: 1119785855
Category : Computers
Languages : en
Pages : 530
Book Description
Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
Publisher: John Wiley & Sons
ISBN: 1119785855
Category : Computers
Languages : en
Pages : 530
Book Description
Machine Learning Approach for Cloud Data Analytics in IoT The book covers the multidimensional perspective of machine learning through the perspective of cloud computing and Internet of Things ranging from fundamentals to advanced applications Sustainable computing paradigms like cloud and fog are capable of handling issues related to performance, storage and processing, maintenance, security, efficiency, integration, cost, energy and latency in an expeditious manner. In order to expedite decision-making involved in the complex computation and processing of collected data, IoT devices are connected to the cloud or fog environment. Since machine learning as a service provides the best support in business intelligence, organizations have been making significant investments in this technology. Machine Learning Approach for Cloud Data Analytics in IoT elucidates some of the best practices and their respective outcomes in cloud and fog computing environments. It focuses on all the various research issues related to big data storage and analysis, large-scale data processing, knowledge discovery and knowledge management, computational intelligence, data security and privacy, data representation and visualization, and data analytics. The featured technologies presented in the book optimizes various industry processes using business intelligence in engineering and technology. Light is also shed on cloud-based embedded software development practices to integrate complex machines so as to increase productivity and reduce operational costs. The various practices of data science and analytics which are used in all sectors to understand big data and analyze massive data patterns are also detailed in the book.
Hybrid Artificial Intelligent Systems
Author: Francisco Javier Martínez de Pisón
Publisher: Springer
ISBN: 3319596500
Category : Computers
Languages : en
Pages : 734
Book Description
This volume constitutes the refereed proceedings of the 12th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2017, held in La Rioja, Spain, in June 2017. The 60 full papers published in this volume were carefully reviewed and selected from 130 submissions. They are organized in the following topical sections: data mining, knowledge discovery and big data; bioinspired models and evolutionary computing; learning algorithms; visual analysis and advanced data processing techniques; data mining applications; and hybrid intelligent applications.
Publisher: Springer
ISBN: 3319596500
Category : Computers
Languages : en
Pages : 734
Book Description
This volume constitutes the refereed proceedings of the 12th International Conference on Hybrid Artificial Intelligent Systems, HAIS 2017, held in La Rioja, Spain, in June 2017. The 60 full papers published in this volume were carefully reviewed and selected from 130 submissions. They are organized in the following topical sections: data mining, knowledge discovery and big data; bioinspired models and evolutionary computing; learning algorithms; visual analysis and advanced data processing techniques; data mining applications; and hybrid intelligent applications.
Artificial Intelligence for Business
Author: Ana Landeta Echeberria
Publisher: Springer Nature
ISBN: 3030882411
Category : Business & Economics
Languages : en
Pages : 210
Book Description
This book seeks to build a shared understanding of Artificial Intelligence (AI) within the global business scenario today and in the near future. Drawing on academic theory and real-world case studies, it examines AI’s development and application across a number of business contexts. Taking current scholarship forward in its engagement with AI theory and practice for enterprises and applied research and innovation, it outlines international practices for the promotion of reliable AI systems, trends, research and development, fostering a digital ecosystem for AI and preparing companies for job transformation and building skills. This book will be of great interest to academics studying Digital Business, Digital Strategy, Innovation Management, and Information Technology.
Publisher: Springer Nature
ISBN: 3030882411
Category : Business & Economics
Languages : en
Pages : 210
Book Description
This book seeks to build a shared understanding of Artificial Intelligence (AI) within the global business scenario today and in the near future. Drawing on academic theory and real-world case studies, it examines AI’s development and application across a number of business contexts. Taking current scholarship forward in its engagement with AI theory and practice for enterprises and applied research and innovation, it outlines international practices for the promotion of reliable AI systems, trends, research and development, fostering a digital ecosystem for AI and preparing companies for job transformation and building skills. This book will be of great interest to academics studying Digital Business, Digital Strategy, Innovation Management, and Information Technology.
The 10th International Conference on Computer Engineering and Networks
Author: Qi Liu
Publisher: Springer Nature
ISBN: 9811584621
Category : Technology & Engineering
Languages : en
Pages : 1770
Book Description
This book contains a collection of the papers accepted by the CENet2020 – the 10th International Conference on Computer Engineering and Networks held on October 16-18, 2020 in Xi’an, China. The topics focus but are not limited to Internet of Things and Smart Systems, Artificial Intelligence and Applications, Communication System Detection, Analysis and Application, and Medical Engineering and Information Systems. Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by this conference proceedings. This will enable them to produce, maintain, and manage systems with high levels of trustworthiness and complexity.
Publisher: Springer Nature
ISBN: 9811584621
Category : Technology & Engineering
Languages : en
Pages : 1770
Book Description
This book contains a collection of the papers accepted by the CENet2020 – the 10th International Conference on Computer Engineering and Networks held on October 16-18, 2020 in Xi’an, China. The topics focus but are not limited to Internet of Things and Smart Systems, Artificial Intelligence and Applications, Communication System Detection, Analysis and Application, and Medical Engineering and Information Systems. Each part can be used as an excellent reference by industry practitioners, university faculties, research fellows and undergraduates as well as graduate students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by this conference proceedings. This will enable them to produce, maintain, and manage systems with high levels of trustworthiness and complexity.
Mobile Edge Computing
Author: Anwesha Mukherjee
Publisher: Springer Nature
ISBN: 3030698939
Category : Computers
Languages : en
Pages : 598
Book Description
Mobile Edge Computing (MEC) provides cloud-like subscription-oriented services at the edge of mobile network. For low latency and high bandwidth services, edge computing assisted IoT (Internet of Things) has become the pillar for the development of smart environments and their applications such as smart home, smart health, smart traffic management, smart agriculture, and smart city. This book covers the fundamental concept of the MEC and its real-time applications. The book content is organized into three parts: Part A covers the architecture and working model of MEC, Part B focuses on the systems, platforms, services and issues of MEC, and Part C emphases on various applications of MEC. This book is targeted for graduate students, researchers, developers, and service providers interested in learning about the state-of-the-art in MEC technologies, innovative applications, and future research directions.
Publisher: Springer Nature
ISBN: 3030698939
Category : Computers
Languages : en
Pages : 598
Book Description
Mobile Edge Computing (MEC) provides cloud-like subscription-oriented services at the edge of mobile network. For low latency and high bandwidth services, edge computing assisted IoT (Internet of Things) has become the pillar for the development of smart environments and their applications such as smart home, smart health, smart traffic management, smart agriculture, and smart city. This book covers the fundamental concept of the MEC and its real-time applications. The book content is organized into three parts: Part A covers the architecture and working model of MEC, Part B focuses on the systems, platforms, services and issues of MEC, and Part C emphases on various applications of MEC. This book is targeted for graduate students, researchers, developers, and service providers interested in learning about the state-of-the-art in MEC technologies, innovative applications, and future research directions.
Intelligent Technologies and Parkinson’s Disease: Prediction and Diagnosis
Author: Kumar, Abhishek
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 412
Book Description
When it comes to Parkinson's disease, one of the most important issues revolves around early detection and accurate diagnosis. The intricacies of this neurodegenerative disorder often elude timely identification, leaving patients and healthcare providers grappling with its progressive symptoms. Ethical concerns surrounding the use of machine learning to aid in diagnosis further complicate this challenge. This issue is particularly significant for research scholars, PhD fellows, post-doc fellows, and medical and biomedical scholars seeking to unravel the mysteries of Parkinson's disease and develop more effective treatments. Intelligent Technologies and Parkinson’s Disease: Prediction and Diagnosis serves as a beacon of hope in the quest to revolutionize Parkinson's disease diagnosis and treatment. It unveils the remarkable potential of artificial intelligence (AI) and machine learning (ML) in remodeling the way we approach this debilitating condition. With a comprehensive exploration of AI's capacity to analyze speech patterns, brain imaging data, and gait patterns, this book offers a powerful solution to the challenges of early detection and accurate diagnosis.
Publisher: IGI Global
ISBN:
Category : Medical
Languages : en
Pages : 412
Book Description
When it comes to Parkinson's disease, one of the most important issues revolves around early detection and accurate diagnosis. The intricacies of this neurodegenerative disorder often elude timely identification, leaving patients and healthcare providers grappling with its progressive symptoms. Ethical concerns surrounding the use of machine learning to aid in diagnosis further complicate this challenge. This issue is particularly significant for research scholars, PhD fellows, post-doc fellows, and medical and biomedical scholars seeking to unravel the mysteries of Parkinson's disease and develop more effective treatments. Intelligent Technologies and Parkinson’s Disease: Prediction and Diagnosis serves as a beacon of hope in the quest to revolutionize Parkinson's disease diagnosis and treatment. It unveils the remarkable potential of artificial intelligence (AI) and machine learning (ML) in remodeling the way we approach this debilitating condition. With a comprehensive exploration of AI's capacity to analyze speech patterns, brain imaging data, and gait patterns, this book offers a powerful solution to the challenges of early detection and accurate diagnosis.
Artificial Intelligence and Machine Learning Applications for Sustainable Development
Author: A. J. Singh
Publisher: CRC Press
ISBN: 1040273599
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
The book highlights how technologies including artificial intelligence and machine learning are transforming renewable energy technologies and enabling the development of new solutions. It further discusses how smart technologies are employed to optimize energy production and storage, enhance energy efficiency, and improve the overall sustainability of energy systems. This book: Discusses artificial intelligence-based techniques, namely, neural networks, fuzzy expert systems, optimization techniques, and operational research Showcases the importance of artificial intelligence and machine learning in the energy market, demand analysis, and forecasting of renewable energy applications Illustrates strategies for sustainable development using artificial intelligence and machine learning applications Presents applications of artificial intelligence in the domain of electronics transformation and development, smart cities, and renewable energy utilization Highlights the role of artificial intelligence in solving problems such as image and signal processing, smart weather monitoring, smart farming, and distributed energy sources It is primarily written for senior undergraduates, graduate students, and academic researchers in diverse fields, including electrical, electronics and communications, energy, and environmental engineering.
Publisher: CRC Press
ISBN: 1040273599
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
The book highlights how technologies including artificial intelligence and machine learning are transforming renewable energy technologies and enabling the development of new solutions. It further discusses how smart technologies are employed to optimize energy production and storage, enhance energy efficiency, and improve the overall sustainability of energy systems. This book: Discusses artificial intelligence-based techniques, namely, neural networks, fuzzy expert systems, optimization techniques, and operational research Showcases the importance of artificial intelligence and machine learning in the energy market, demand analysis, and forecasting of renewable energy applications Illustrates strategies for sustainable development using artificial intelligence and machine learning applications Presents applications of artificial intelligence in the domain of electronics transformation and development, smart cities, and renewable energy utilization Highlights the role of artificial intelligence in solving problems such as image and signal processing, smart weather monitoring, smart farming, and distributed energy sources It is primarily written for senior undergraduates, graduate students, and academic researchers in diverse fields, including electrical, electronics and communications, energy, and environmental engineering.