Constructions of Strict Lyapunov Functions

Constructions of Strict Lyapunov Functions PDF Author: Michael Malisoff
Publisher: Springer Science & Business Media
ISBN: 1848825358
Category : Technology & Engineering
Languages : en
Pages : 386

Get Book Here

Book Description
Converse Lyapunov function theory guarantees the existence of strict Lyapunov functions in many situations, but the functions it provides are often abstract and nonexplicit, and therefore may not lend themselves to engineering applications. Often, even when a system is known to be stable, one still needs explicit Lyapunov functions; however, once an appropriate strict Lyapunov function has been constructed, many robustness and stabilization problems can be solved through standard feedback designs or robustness arguments. Non-strict Lyapunov functions are often readily constructed. This book contains a broad repertoire of Lyapunov constructions for nonlinear systems, focusing on methods for transforming non-strict Lyapunov functions into strict ones. Their explicitness and simplicity make them suitable for feedback design, and for quantifying the effects of uncertainty. Readers will benefit from the authors’ mathematical rigor and unifying, design-oriented approach, as well as the numerous worked examples.

Constructions of Strict Lyapunov Functions

Constructions of Strict Lyapunov Functions PDF Author: Michael Malisoff
Publisher: Springer Science & Business Media
ISBN: 1848825358
Category : Technology & Engineering
Languages : en
Pages : 386

Get Book Here

Book Description
Converse Lyapunov function theory guarantees the existence of strict Lyapunov functions in many situations, but the functions it provides are often abstract and nonexplicit, and therefore may not lend themselves to engineering applications. Often, even when a system is known to be stable, one still needs explicit Lyapunov functions; however, once an appropriate strict Lyapunov function has been constructed, many robustness and stabilization problems can be solved through standard feedback designs or robustness arguments. Non-strict Lyapunov functions are often readily constructed. This book contains a broad repertoire of Lyapunov constructions for nonlinear systems, focusing on methods for transforming non-strict Lyapunov functions into strict ones. Their explicitness and simplicity make them suitable for feedback design, and for quantifying the effects of uncertainty. Readers will benefit from the authors’ mathematical rigor and unifying, design-oriented approach, as well as the numerous worked examples.

Construction of Global Lyapunov Functions Using Radial Basis Functions

Construction of Global Lyapunov Functions Using Radial Basis Functions PDF Author: Peter Giesl
Publisher: Springer
ISBN: 3540699090
Category : Mathematics
Languages : en
Pages : 175

Get Book Here

Book Description
The basin of attraction of an equilibrium of an ordinary differential equation can be determined using a Lyapunov function. A new method to construct such a Lyapunov function using radial basis functions is presented in this volume intended for researchers and advanced students from both dynamical systems and radial basis functions. Besides an introduction to both areas and a detailed description of the method, it contains error estimates and many examples.

Non-linear Control for Underactuated Mechanical Systems

Non-linear Control for Underactuated Mechanical Systems PDF Author: Isabelle Fantoni
Publisher: Springer Science & Business Media
ISBN: 1447101774
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
This book deals with the application of modern control theory to some important underactuated mechanical systems, from the inverted pendulum to the helicopter model. It will help readers gain experience in the modelling of mechanical systems and familiarize with new control methods for non-linear systems.

Nonlinear Dynamical Systems and Control

Nonlinear Dynamical Systems and Control PDF Author: Wassim M. Haddad
Publisher: Princeton University Press
ISBN: 1400841046
Category : Mathematics
Languages : en
Pages : 975

Get Book Here

Book Description
Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Stability and Stabilization of Nonlinear Systems

Stability and Stabilization of Nonlinear Systems PDF Author: Iasson Karafyllis
Publisher: Springer Science & Business Media
ISBN: 0857295136
Category : Technology & Engineering
Languages : en
Pages : 401

Get Book Here

Book Description
Recently, the subject of nonlinear control systems analysis has grown rapidly and this book provides a simple and self-contained presentation of their stability and feedback stabilization which enables the reader to learn and understand major techniques used in mathematical control theory. In particular: the important techniques of proving global stability properties are presented closely linked with corresponding methods of nonlinear feedback stabilization; a general framework of methods for proving stability is given, thus allowing the study of a wide class of nonlinear systems, including finite-dimensional systems described by ordinary differential equations, discrete-time systems, systems with delays and sampled-data systems; approaches to the proof of classical global stability properties are extended to non-classical global stability properties such as non-uniform-in-time stability and input-to-output stability; and new tools for stability analysis and control design of a wide class of nonlinear systems are introduced. The presentational emphasis of Stability and Stabilization of Nonlinear Systems is theoretical but the theory’s importance for concrete control problems is highlighted with a chapter specifically dedicated to applications and with numerous illustrative examples. Researchers working on nonlinear control theory will find this monograph of interest while graduate students of systems and control can also gain much insight and assistance from the methods and proofs detailed in this book.

Safety Factor Profile Control in a Tokamak

Safety Factor Profile Control in a Tokamak PDF Author: Federico Bribiesca Argomedo
Publisher: Springer Science & Business Media
ISBN: 3319019589
Category : Technology & Engineering
Languages : en
Pages : 105

Get Book Here

Book Description
Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The text then tackles the construction of an input-to-state-stability Lyapunov function for the infinite-dimensional system that handles the medium anisotropy and provides a common basis for analytical robustness results. This function is used as a control-Lyapunov function and allows the amplitude and nonlinear shape constraints in the control action to be dealt with. Finally, the Brief addresses important application- and implementation-specific concerns. In particular, the coupling of the PDE and the finite-dimensional subsystem representing the evolution of the boundary condition (magnetic coils) and the introduction of profile-reconstruction delays in the control loop (induced by solving a 2-D inverse problem for computing the magnetic flux) is analyzed. Simulation results are presented for various operation scenarios on Tore Supra (simulated with METIS) and on TCV (simulated with RAPTOR). Control of the Safety Factor Profile in a Tokamak will be of interest to both academic and industrially-based researchers interested in nuclear energy and plasma-containment control systems, and graduate students in nuclear and control engineering.

Nonsmooth Lyapunov Analysis in Finite and Infinite Dimensions

Nonsmooth Lyapunov Analysis in Finite and Infinite Dimensions PDF Author: Yury Orlov
Publisher: Springer Nature
ISBN: 3030376257
Category : Technology & Engineering
Languages : en
Pages : 351

Get Book Here

Book Description
Nonsmooth Lyapunov Analysis in Finite and Infinite Dimensions provides helpful tools for the treatment of a broad class of dynamical systems that are governed, not only by ordinary differential equations but also by partial and functional differential equations. Existing Lyapunov constructions are extended to discontinuous systems—those with variable structure and impact—by the involvement of nonsmooth Lyapunov functions. The general theoretical presentation is illustrated by control-related applications; the nonsmooth Lyapunov construction is particularly applied to the tuning of sliding-mode controllers in the presence of mismatched disturbances and to orbital stabilization of the bipedal gate. The nonsmooth construction is readily extendible to the control and identification of distributed-parameter and time-delay systems. The first part of the book outlines the relevant fundamentals of benchmark models and mathematical basics. The second concentrates on the construction of nonsmooth Lyapunov functions. Part III covers design and applications material. This book will benefit the academic research and graduate student interested in the mathematics of Lyapunov equations and variable-structure control, stability analysis and robust feedback design for discontinuous systems. It will also serve the practitioner working with applications of such systems. The reader should have some knowledge of dynamical systems theory, but no background in discontinuous systems is required—they are thoroughly introduced in both finite- and infinite-dimensional settings.

(In-)Stability of Differential Inclusions

(In-)Stability of Differential Inclusions PDF Author: Philipp Braun
Publisher: Springer Nature
ISBN: 303076317X
Category : Mathematics
Languages : en
Pages : 123

Get Book Here

Book Description
Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.

Finite-Time Stability: An Input-Output Approach

Finite-Time Stability: An Input-Output Approach PDF Author: Francesco Amato
Publisher: John Wiley & Sons
ISBN: 1119140528
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book Here

Book Description
Systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, covering issues of analysis, design and robustness The interest in finite-time control has continuously grown in the last fifteen years. This book systematically presents the input-output finite-time stability (IO-FTS) analysis of dynamical systems, with specific reference to linear time-varying systems and hybrid systems. It discusses analysis, design and robustness issues, and includes applications to real world engineering problems. While classical FTS has an important theoretical significance, IO-FTS is a more practical concept, which is more suitable for real engineering applications, the goal of the research on this topic in the coming years. Key features: Includes applications to real world engineering problems. Input-output finite-time stability (IO-FTS) is a practical concept, useful to study the behavior of a dynamical system within a finite interval of time. Computationally tractable conditions are provided that render the technique applicable to time-invariant as well as time varying and impulsive (i.e. switching) systems. The LMIs formulation allows mixing the IO-FTS approach with existing control techniques (e. g. H∞ control, optimal control, pole placement, etc.). This book is essential reading for university researchers as well as post-graduate engineers practicing in the field of robust process control in research centers and industries. Topics dealt with in the book could also be taught at the level of advanced control courses for graduate students in the department of electrical and computer engineering, mechanical engineering, aeronautics and astronautics, and applied mathematics.

Nonlinear Control Under Nonconstant Delays

Nonlinear Control Under Nonconstant Delays PDF Author: Nikolaos Bekiaris-Liberis
Publisher: SIAM
ISBN: 1611973171
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
The authors have developed a methodology for control of nonlinear systems in the presence of long delays, with large and rapid variation in the actuation or sensing path, or in the presence of long delays affecting the internal state of a system. In addition to control synthesis, they introduce tools to quantify the performance and the robustness properties of the designs provided in the book. The book is based on the concept of predictor feedback and infinite-dimensional backstepping transformation for linear systems and the authors guide the reader from the basic ideas of the concept?with constant delays only on the input?all the way through to nonlinear systems with state-dependent delays on the input as well as on system states. Readers will find the book useful because the authors provide elegant and systematic treatments of long-standing problems in delay systems, such as systems with state-dependent delays that arise in many applications. In addition, the authors give all control designs by explicit formulae, making the book especially useful for engineers who have faced delay-related challenges and are concerned with actual implementations and they accompany all control designs with Lyapunov-based analysis for establishing stability and performance guarantees.