Author: Philippe Baptiste
Publisher: Springer Science & Business Media
ISBN: 1461514797
Category : Mathematics
Languages : en
Pages : 204
Book Description
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsible for the "hardness" of the scheduling problem. Chapters 6, 7, and 8 are dedicated to the resolution of several scheduling problems. These examples illustrate the use and the practical efficiency of the constraint propagation methods of the previous chapters. They also show that besides constraint propagation, the exploration of the search space must be carefully designed, taking into account specific properties of the considered problem (e.g., dominance relations, symmetries, possible use of decomposition rules). Chapter 9 mentions various extensions of the model and presents promising research directions.
Constraint-Based Scheduling
Author: Philippe Baptiste
Publisher: Springer Science & Business Media
ISBN: 1461514797
Category : Mathematics
Languages : en
Pages : 204
Book Description
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsible for the "hardness" of the scheduling problem. Chapters 6, 7, and 8 are dedicated to the resolution of several scheduling problems. These examples illustrate the use and the practical efficiency of the constraint propagation methods of the previous chapters. They also show that besides constraint propagation, the exploration of the search space must be carefully designed, taking into account specific properties of the considered problem (e.g., dominance relations, symmetries, possible use of decomposition rules). Chapter 9 mentions various extensions of the model and presents promising research directions.
Publisher: Springer Science & Business Media
ISBN: 1461514797
Category : Mathematics
Languages : en
Pages : 204
Book Description
Constraint Programming is a problem-solving paradigm that establishes a clear distinction between two pivotal aspects of a problem: (1) a precise definition of the constraints that define the problem to be solved and (2) the algorithms and heuristics enabling the selection of decisions to solve the problem. It is because of these capabilities that Constraint Programming is increasingly being employed as a problem-solving tool to solve scheduling problems. Hence the development of Constraint-Based Scheduling as a field of study. The aim of this book is to provide an overview of the most widely used Constraint-Based Scheduling techniques. Following the principles of Constraint Programming, the book consists of three distinct parts: The first chapter introduces the basic principles of Constraint Programming and provides a model of the constraints that are the most often encountered in scheduling problems. Chapters 2, 3, 4, and 5 are focused on the propagation of resource constraints, which usually are responsible for the "hardness" of the scheduling problem. Chapters 6, 7, and 8 are dedicated to the resolution of several scheduling problems. These examples illustrate the use and the practical efficiency of the constraint propagation methods of the previous chapters. They also show that besides constraint propagation, the exploration of the search space must be carefully designed, taking into account specific properties of the considered problem (e.g., dominance relations, symmetries, possible use of decomposition rules). Chapter 9 mentions various extensions of the model and presents promising research directions.
Constraint-based Reasoning
Author: Eugene C. Freuder
Publisher: MIT Press
ISBN: 9780262560757
Category : Computers
Languages : en
Pages : 420
Book Description
Constraint-based reasoning is an important area of automated reasoning in artificial intelligence, with many applications. These include configuration and design problems, planning and scheduling, temporal and spatial reasoning, defeasible and causal reasoning, machine vision and language understanding, qualitative and diagnostic reasoning, and expert systems. Constraint-Based Reasoning presents current work in the field at several levels: theory, algorithms, languages, applications, and hardware. Constraint-based reasoning has connections to a wide variety of fields, including formal logic, graph theory, relational databases, combinatorial algorithms, operations research, neural networks, truth maintenance, and logic programming. The ideal of describing a problem domain in natural, declarative terms and then letting general deductive mechanisms synthesize individual solutions has to some extent been realized, and even embodied, in programming languages. Contents Introduction, E. C. Freuder, A. K. Mackworth * The Logic of Constraint Satisfaction, A. K. Mackworth * Partial Constraint Satisfaction, E. C. Freuder, R. J. Wallace * Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach, E. Hyvonen * Constraint Satisfaction Using Constraint Logic Programming, P. Van Hentenryck, H. Simonis, M. Dincbas * Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems, S. Minton, M. D. Johnston, A. B. Philips, and P. Laird * Arc Consistency: Parallelism and Domain Dependence, P. R. Cooper, M. J. Swain * Structure Identification in Relational Data, R. Dechter, J. Pearl * Learning to Improve Constraint-Based Scheduling, M. Zweben, E. Davis, B. Daun, E. Drascher, M. Deale, M. Eskey * Reasoning about Qualitative Temporal Information, P. van Beek * A Geometric Constraint Engine, G. A. Kramer * A Theory of Conflict Resolution in Planning, Q. Yang A Bradford Book.
Publisher: MIT Press
ISBN: 9780262560757
Category : Computers
Languages : en
Pages : 420
Book Description
Constraint-based reasoning is an important area of automated reasoning in artificial intelligence, with many applications. These include configuration and design problems, planning and scheduling, temporal and spatial reasoning, defeasible and causal reasoning, machine vision and language understanding, qualitative and diagnostic reasoning, and expert systems. Constraint-Based Reasoning presents current work in the field at several levels: theory, algorithms, languages, applications, and hardware. Constraint-based reasoning has connections to a wide variety of fields, including formal logic, graph theory, relational databases, combinatorial algorithms, operations research, neural networks, truth maintenance, and logic programming. The ideal of describing a problem domain in natural, declarative terms and then letting general deductive mechanisms synthesize individual solutions has to some extent been realized, and even embodied, in programming languages. Contents Introduction, E. C. Freuder, A. K. Mackworth * The Logic of Constraint Satisfaction, A. K. Mackworth * Partial Constraint Satisfaction, E. C. Freuder, R. J. Wallace * Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach, E. Hyvonen * Constraint Satisfaction Using Constraint Logic Programming, P. Van Hentenryck, H. Simonis, M. Dincbas * Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems, S. Minton, M. D. Johnston, A. B. Philips, and P. Laird * Arc Consistency: Parallelism and Domain Dependence, P. R. Cooper, M. J. Swain * Structure Identification in Relational Data, R. Dechter, J. Pearl * Learning to Improve Constraint-Based Scheduling, M. Zweben, E. Davis, B. Daun, E. Drascher, M. Deale, M. Eskey * Reasoning about Qualitative Temporal Information, P. van Beek * A Geometric Constraint Engine, G. A. Kramer * A Theory of Conflict Resolution in Planning, Q. Yang A Bradford Book.
Handbook of Constraint Programming
Author: Francesca Rossi
Publisher: Elsevier
ISBN: 0080463800
Category : Computers
Languages : en
Pages : 977
Book Description
Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics.The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area.The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming.- Covers the whole field of constraint programming- Survey-style chapters- Five chapters on applications
Publisher: Elsevier
ISBN: 0080463800
Category : Computers
Languages : en
Pages : 977
Book Description
Constraint programming is a powerful paradigm for solving combinatorial search problems that draws on a wide range of techniques from artificial intelligence, computer science, databases, programming languages, and operations research. Constraint programming is currently applied with success to many domains, such as scheduling, planning, vehicle routing, configuration, networks, and bioinformatics.The aim of this handbook is to capture the full breadth and depth of the constraint programming field and to be encyclopedic in its scope and coverage. While there are several excellent books on constraint programming, such books necessarily focus on the main notions and techniques and cannot cover also extensions, applications, and languages. The handbook gives a reasonably complete coverage of all these lines of work, based on constraint programming, so that a reader can have a rather precise idea of the whole field and its potential. Of course each line of work is dealt with in a survey-like style, where some details may be neglected in favor of coverage. However, the extensive bibliography of each chapter will help the interested readers to find suitable sources for the missing details. Each chapter of the handbook is intended to be a self-contained survey of a topic, and is written by one or more authors who are leading researchers in the area.The intended audience of the handbook is researchers, graduate students, higher-year undergraduates and practitioners who wish to learn about the state-of-the-art in constraint programming. No prior knowledge about the field is necessary to be able to read the chapters and gather useful knowledge. Researchers from other fields should find in this handbook an effective way to learn about constraint programming and to possibly use some of the constraint programming concepts and techniques in their work, thus providing a means for a fruitful cross-fertilization among different research areas.The handbook is organized in two parts. The first part covers the basic foundations of constraint programming, including the history, the notion of constraint propagation, basic search methods, global constraints, tractability and computational complexity, and important issues in modeling a problem as a constraint problem. The second part covers constraint languages and solver, several useful extensions to the basic framework (such as interval constraints, structured domains, and distributed CSPs), and successful application areas for constraint programming.- Covers the whole field of constraint programming- Survey-style chapters- Five chapters on applications
Constraint-Based Local Search
Author: Pascal Van Hentenryck
Publisher: Mit Press
ISBN: 9780262513487
Category : Computers
Languages : en
Pages : 0
Book Description
Introducing a method for solving combinatorial optimization problems that combines the techniques of constraint programming and local search. The ubiquity of combinatorial optimization problems in our society is illustrated by the novel application areas for optimization technology, which range from supply chain management to sports tournament scheduling. Over the last two decades, constraint programming has emerged as a fundamental methodology to solve a variety of combinatorial problems, and rich constraint programming languages have been developed for expressing and combining constraints and specifying search procedures at a high level of abstraction. Local search approaches to combinatorial optimization are able to isolate optimal or near-optimal solutions within reasonable time constraints. This book introduces a method for solving combinatorial optimization problems that combines constraint programming and local search, using constraints to describe and control local search, and a programming language, COMET, that supports both modeling and search abstractions in the spirit of constraint programming. After an overview of local search including neighborhoods, heuristics, and metaheuristics, the book presents the architecture and modeling and search components of constraint-based local search and describes how constraint-based local search is supported in COMET. The book describes a variety of applications, arranged by meta-heuristics. It presents scheduling applications, along with the background necessary to understand these challenging problems. The book also includes a number of satisfiability problems, illustrating the ability of constraint-based local search approaches to cope with both satisfiability and optimization problems in a uniform fashion.
Publisher: Mit Press
ISBN: 9780262513487
Category : Computers
Languages : en
Pages : 0
Book Description
Introducing a method for solving combinatorial optimization problems that combines the techniques of constraint programming and local search. The ubiquity of combinatorial optimization problems in our society is illustrated by the novel application areas for optimization technology, which range from supply chain management to sports tournament scheduling. Over the last two decades, constraint programming has emerged as a fundamental methodology to solve a variety of combinatorial problems, and rich constraint programming languages have been developed for expressing and combining constraints and specifying search procedures at a high level of abstraction. Local search approaches to combinatorial optimization are able to isolate optimal or near-optimal solutions within reasonable time constraints. This book introduces a method for solving combinatorial optimization problems that combines constraint programming and local search, using constraints to describe and control local search, and a programming language, COMET, that supports both modeling and search abstractions in the spirit of constraint programming. After an overview of local search including neighborhoods, heuristics, and metaheuristics, the book presents the architecture and modeling and search components of constraint-based local search and describes how constraint-based local search is supported in COMET. The book describes a variety of applications, arranged by meta-heuristics. It presents scheduling applications, along with the background necessary to understand these challenging problems. The book also includes a number of satisfiability problems, illustrating the ability of constraint-based local search approaches to cope with both satisfiability and optimization problems in a uniform fashion.
Resource-Constrained Project Scheduling
Author: Christian Artigues
Publisher: John Wiley & Sons
ISBN: 1118623703
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.
Publisher: John Wiley & Sons
ISBN: 1118623703
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
This title presents a large variety of models and algorithms dedicated to the resource-constrained project scheduling problem (RCPSP), which aims at scheduling at minimal duration a set of activities subject to precedence constraints and limited resource availabilities. In the first part, the standard variant of RCPSP is presented and analyzed as a combinatorial optimization problem. Constraint programming and integer linear programming formulations are given. Relaxations based on these formulations and also on related scheduling problems are presented. Exact methods and heuristics are surveyed. Computational experiments, aiming at providing an empirical insight on the difficulty of the problem, are provided. The second part of the book focuses on several other variants of the RCPSP and on their solution methods. Each variant takes account of real-life characteristics which are not considered in the standard version, such as possible interruptions of activities, production and consumption of resources, cost-based approaches and uncertainty considerations. The last part presents industrial case studies where the RCPSP plays a central part. Applications are presented in various domains such as assembly shop and rolling ingots production scheduling, project management in information technology companies and instruction scheduling for VLIW processor architectures.
Principles and Practice of Constraint Programming
Author: J. Christopher Beck
Publisher: Springer
ISBN: 3319661582
Category : Mathematics
Languages : en
Pages : 750
Book Description
This book constitutes the refereed conference proceedings of the 23nd International Conference on Principles and Practice of Constraint Programming, CP 2017, held in Melbourne, Australia from August 28, 2017 until September 1, 2017. The conference is colocated with the 20th International Conference on Theory and Applications of Satisfiability Testing (SAT 2017) and the 33rd International Conference on Logic Programming. The 46 revised full papers presented were carefully reviewed and selected from 115 submissions. The scope of the contributions includes all aspects of computing with constraints, including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource al location, scheduling, configuration, and planning. The papers are grouped into the following tracks: technical track; application track; machine learning & CP track; operations research & CP track; satisfiability & CP track, test and verification & CP track; journal & sister conference track.
Publisher: Springer
ISBN: 3319661582
Category : Mathematics
Languages : en
Pages : 750
Book Description
This book constitutes the refereed conference proceedings of the 23nd International Conference on Principles and Practice of Constraint Programming, CP 2017, held in Melbourne, Australia from August 28, 2017 until September 1, 2017. The conference is colocated with the 20th International Conference on Theory and Applications of Satisfiability Testing (SAT 2017) and the 33rd International Conference on Logic Programming. The 46 revised full papers presented were carefully reviewed and selected from 115 submissions. The scope of the contributions includes all aspects of computing with constraints, including theory, algorithms, environments, languages, models, systems, and applications such as decision making, resource al location, scheduling, configuration, and planning. The papers are grouped into the following tracks: technical track; application track; machine learning & CP track; operations research & CP track; satisfiability & CP track, test and verification & CP track; journal & sister conference track.
Principles of Constraint Programming
Author: Krzysztof Apt
Publisher: Cambridge University Press
ISBN: 1139438700
Category : Computers
Languages : en
Pages : 421
Book Description
Constraints are everywhere: most computational problems can be described in terms of restrictions imposed on the set of possible solutions, and constraint programming is a problem-solving technique that works by incorporating those restrictions in a programming environment. It draws on methods from combinatorial optimisation and artificial intelligence, and has been successfully applied in a number of fields from scheduling, computational biology, finance, electrical engineering and operations research through to numerical analysis. This textbook for upper-division students provides a thorough and structured account of the main aspects of constraint programming. The author provides many worked examples that illustrate the usefulness and versatility of this approach to programming, as well as many exercises throughout the book that illustrate techniques, test skills and extend the text. Pointers to current research, extensive historical and bibliographic notes, and a comprehensive list of references will also be valuable to professionals in computer science and artificial intelligence.
Publisher: Cambridge University Press
ISBN: 1139438700
Category : Computers
Languages : en
Pages : 421
Book Description
Constraints are everywhere: most computational problems can be described in terms of restrictions imposed on the set of possible solutions, and constraint programming is a problem-solving technique that works by incorporating those restrictions in a programming environment. It draws on methods from combinatorial optimisation and artificial intelligence, and has been successfully applied in a number of fields from scheduling, computational biology, finance, electrical engineering and operations research through to numerical analysis. This textbook for upper-division students provides a thorough and structured account of the main aspects of constraint programming. The author provides many worked examples that illustrate the usefulness and versatility of this approach to programming, as well as many exercises throughout the book that illustrate techniques, test skills and extend the text. Pointers to current research, extensive historical and bibliographic notes, and a comprehensive list of references will also be valuable to professionals in computer science and artificial intelligence.
Constraint Processing
Author: Rina Dechter
Publisher: Morgan Kaufmann
ISBN: 1558608907
Category : Computers
Languages : en
Pages : 504
Book Description
Constraint reasoning has matured over the last three decades with contributions from a diverse community of researchers in artificial intelligence, databases and programming languages, operations research, management science, and applied mathematics. In Constraint Processing, Rina Dechter synthesizes these contributions, as well as her own significant work, to provide the first comprehensive examination of the theory that underlies constraint processing algorithms.
Publisher: Morgan Kaufmann
ISBN: 1558608907
Category : Computers
Languages : en
Pages : 504
Book Description
Constraint reasoning has matured over the last three decades with contributions from a diverse community of researchers in artificial intelligence, databases and programming languages, operations research, management science, and applied mathematics. In Constraint Processing, Rina Dechter synthesizes these contributions, as well as her own significant work, to provide the first comprehensive examination of the theory that underlies constraint processing algorithms.
Constraint Solving and Planning with Picat
Author: Neng-Fa Zhou
Publisher: Springer
ISBN: 3319258834
Category : Computers
Languages : en
Pages : 155
Book Description
This book introduces a new logic-based multi-paradigm programming language that integrates logic programming, functional programming, dynamic programming with tabling, and scripting, for use in solving combinatorial search problems, including CP, SAT, and MIP (mixed integer programming) based solver modules, and a module for planning that is implemented using tabling. The book is useful for undergraduate and graduate students, researchers, and practitioners.
Publisher: Springer
ISBN: 3319258834
Category : Computers
Languages : en
Pages : 155
Book Description
This book introduces a new logic-based multi-paradigm programming language that integrates logic programming, functional programming, dynamic programming with tabling, and scripting, for use in solving combinatorial search problems, including CP, SAT, and MIP (mixed integer programming) based solver modules, and a module for planning that is implemented using tabling. The book is useful for undergraduate and graduate students, researchers, and practitioners.
Constraint-based Scheduling
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 22
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 22
Book Description