Constraining Climate Impact Uncertainties from Future Aviation

Constraining Climate Impact Uncertainties from Future Aviation PDF Author: Inés Sanz-Morère
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Environmental impacts from the aviation sector are in continuous growth. The total sector contribution to anthropogenic climate forcing is approximately 3.5%, representing up to 9% of US greenhouse gas emissions from transportation in 2018. Despite the COVID-19 crisis, it is also expected to grow at a global rate of approximately 4% per year in the next 20 years, and a full sector recovery is expected by 2024. The total impacts of aviation emissions on the climate, however, are still uncertain. This is due to factors including (i) the uncertainty regarding the radiative effects of short- and long-term climate forcers; (ii) the difficulty of validating modeling tools e.g. contrail formation and persistence or stratospheric chemical response to emissions; and (iii) the growing interest in new air transportation technologies such as unmanned aerial vehicles, supersonic aviation, or hydrogen and alternative fuels. These factors together require a persistent effort to improve the available tools assessing aviation environmental footprint. The objective of this thesis is to provide additional insights into aviation climate impacts, by improving current modeling capabilities. Specially, I aim to resolve elements that will be of increasing interest as the sector evolves. The work is divided into two parts. The first part focuses on improving climate impact estimates from contrails, ice clouds which form behind aircraft. Those are estimated to cause approximately half of the total climate forcing from aviation. The second part focuses on developing modeling tools for assessing climate impacts from future commercially viable supersonic fleets, as multiple companies are currently designing projects of that type (Aerion, Boom, Spike Aerospace, NASA, Lockheed Martin, etc.). In the first part, I develop a new contrail radiative forcing model with a new parameterization to model exchanges of radiation when multiple cloud layers overlap occur. My parameterization also reduces current uncertainties related to uncertainties in contrail microphysical structure. I find that, assuming maximum possible overlap, cloud-contrail overlap in 2015 increased the net radiative forcing from contrails. This effect was greatest in the North-Atlantic corridor. For 2015, contrail-contrail overlap results in a 3% net reduction in the estimated radiative forcing. Finally, using "in situ" measurements to constrain contrail microphysical evolution pathways, I find that the global net radiative forcing due to contrails in 2015 is between 8.6 and 10.7 mW/m2. Relative to the mid-point, this uncertainty range is less than one quarter of that previously reported in the literature. In the second part, I estimate the sensitivity of the global supersonic market and its climate impacts to factors such as design choice, regulations and economic assumptions. For this, I develop a detailed supersonic aircraft design model providing robust information on cruise altitude, fuel burn and emissions variation with aircraft design choice. I also, in order to address overland restrictions, develop a high-resolution routing algorithm, capable of assessing optimal routing for multiple regulatory options. I obtain that, in the absence of flight path restrictions, a fleet of 130-870 supersonic aircraft can be feasible, operating up to 2.5% of the seat-kilometers in the global aviation market. This will result in a net increase of fuel burn from commercial passenger aviation of up to 7%. However, between 78% and 100% of the global unrestricted market potentials cannot be addressed when supersonic flight is restricted over land or over areas with a population density of more than 50 inhabitants per square kilometer. When evaluating environmental impacts, aircraft design choice can change the sign of supersonic aviation impact on non-CO2 aviation climate forcing. In general, implementing supersonic aviation results in a global warming effect. However, if reducing fleet average NOx emission index by 58%, through an increase in fuel burn of 7%, climate forcing can change from positive (increase) to negative (reduction). Designs aiming to address high-value demand, at the upper bound of supersonic speeds (cruise Mach number = 2.2), are the most environmentally harmful because of their higher cruise altitude and fuel burn. While based on my results, we shouldn't expect any significant viable market from them, a 10% fleet substitution would be responsible of a doubling in global non-CO2 radiative forcing impact.

Constraining Climate Impact Uncertainties from Future Aviation

Constraining Climate Impact Uncertainties from Future Aviation PDF Author: Inés Sanz-Morère
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Environmental impacts from the aviation sector are in continuous growth. The total sector contribution to anthropogenic climate forcing is approximately 3.5%, representing up to 9% of US greenhouse gas emissions from transportation in 2018. Despite the COVID-19 crisis, it is also expected to grow at a global rate of approximately 4% per year in the next 20 years, and a full sector recovery is expected by 2024. The total impacts of aviation emissions on the climate, however, are still uncertain. This is due to factors including (i) the uncertainty regarding the radiative effects of short- and long-term climate forcers; (ii) the difficulty of validating modeling tools e.g. contrail formation and persistence or stratospheric chemical response to emissions; and (iii) the growing interest in new air transportation technologies such as unmanned aerial vehicles, supersonic aviation, or hydrogen and alternative fuels. These factors together require a persistent effort to improve the available tools assessing aviation environmental footprint. The objective of this thesis is to provide additional insights into aviation climate impacts, by improving current modeling capabilities. Specially, I aim to resolve elements that will be of increasing interest as the sector evolves. The work is divided into two parts. The first part focuses on improving climate impact estimates from contrails, ice clouds which form behind aircraft. Those are estimated to cause approximately half of the total climate forcing from aviation. The second part focuses on developing modeling tools for assessing climate impacts from future commercially viable supersonic fleets, as multiple companies are currently designing projects of that type (Aerion, Boom, Spike Aerospace, NASA, Lockheed Martin, etc.). In the first part, I develop a new contrail radiative forcing model with a new parameterization to model exchanges of radiation when multiple cloud layers overlap occur. My parameterization also reduces current uncertainties related to uncertainties in contrail microphysical structure. I find that, assuming maximum possible overlap, cloud-contrail overlap in 2015 increased the net radiative forcing from contrails. This effect was greatest in the North-Atlantic corridor. For 2015, contrail-contrail overlap results in a 3% net reduction in the estimated radiative forcing. Finally, using "in situ" measurements to constrain contrail microphysical evolution pathways, I find that the global net radiative forcing due to contrails in 2015 is between 8.6 and 10.7 mW/m2. Relative to the mid-point, this uncertainty range is less than one quarter of that previously reported in the literature. In the second part, I estimate the sensitivity of the global supersonic market and its climate impacts to factors such as design choice, regulations and economic assumptions. For this, I develop a detailed supersonic aircraft design model providing robust information on cruise altitude, fuel burn and emissions variation with aircraft design choice. I also, in order to address overland restrictions, develop a high-resolution routing algorithm, capable of assessing optimal routing for multiple regulatory options. I obtain that, in the absence of flight path restrictions, a fleet of 130-870 supersonic aircraft can be feasible, operating up to 2.5% of the seat-kilometers in the global aviation market. This will result in a net increase of fuel burn from commercial passenger aviation of up to 7%. However, between 78% and 100% of the global unrestricted market potentials cannot be addressed when supersonic flight is restricted over land or over areas with a population density of more than 50 inhabitants per square kilometer. When evaluating environmental impacts, aircraft design choice can change the sign of supersonic aviation impact on non-CO2 aviation climate forcing. In general, implementing supersonic aviation results in a global warming effect. However, if reducing fleet average NOx emission index by 58%, through an increase in fuel burn of 7%, climate forcing can change from positive (increase) to negative (reduction). Designs aiming to address high-value demand, at the upper bound of supersonic speeds (cruise Mach number = 2.2), are the most environmentally harmful because of their higher cruise altitude and fuel burn. While based on my results, we shouldn't expect any significant viable market from them, a 10% fleet substitution would be responsible of a doubling in global non-CO2 radiative forcing impact.

Aircraft Design for Reduced Climate Impact

Aircraft Design for Reduced Climate Impact PDF Author: Emily Dallara
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 174

Get Book Here

Book Description
Aircraft affect global climate through emissions of greenhouse gases and their precursors and by altering cirrus cloudiness. Changes in operations and design of future aircraft may be necessary to meet goals for limiting climate change. One method for reducing climate impacts involves designing aircraft to fly at altitudes where the impacts of NOx emissions are less severe and persistent contrail formation is less likely. By considering these altitude effects and additionally applying climate mitigation technologies, impacts can be reduced by 45-70% with simultaneous savings in total operating costs. Uncertainty is assessed, demonstrating that relative climate impact savings can be expected despite large scientific uncertainties. Strategies for improving climate performance of existing aircraft are also explored, revealing potential climate impact savings of 20-40%, traded for a 2% increase in total operating costs and reduced maximum range.

Impact of Aviation on Climate

Impact of Aviation on Climate PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 24

Get Book Here

Book Description
Under the Federal Aviation Administration's (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO2 climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO2 aircraft emissions are examined using a number of advanced climate and atmospheric chemistry transport models. Radiative forcing (RF) estimates for individual forcing effects are provided as a range for comparison against those published in the literature. Preliminary results for selected RF components for 2050 scenarios indicate that a 2% increase in fuel efficiency and a decrease in NOx emissions due to advanced aircraft technologies and operational procedures, as well as the introduction of renewable alternative fuels, will significantly decrease future aviation climate impacts. In particular, the use of renewable fuels will further decrease RF associated with sulfate aerosol and black carbon. While this focused ACCRI program effort has yielded significant new knowledge, fundamental uncertainties remain in our understanding of aviation climate impacts. These include several chemical and physical processes associated with NOx-O3-CH4 interactions and the formation of aviation-produced contrails and the effects of aviation soot aerosols on cirrus clouds as well as on deriving a measure of change in temperature from RF for aviation non-CO2 climate impacts -- an important metric that informs decision-making.

Transportation in a Climate-constrained World

Transportation in a Climate-constrained World PDF Author: Andreas Schäfer
Publisher: MIT Press
ISBN: 0262012677
Category : Architecture
Languages : en
Pages : 714

Get Book Here

Book Description
A discussion of the opportunities and challenges involved in mitigating greenhouse gas emissions from passenger travel.

Aviation and the Global Atmosphere

Aviation and the Global Atmosphere PDF Author: Joyce E. Penner
Publisher: Cambridge University Press
ISBN: 9780521663007
Category : Science
Languages : en
Pages : 392

Get Book Here

Book Description
This Intergovernmental Panel on Climate Change Special Report is the most comprehensive assessment available on the effects of aviation on the global atmosphere. The report considers all the gases and particles emitted by aircraft that modify the chemical properties of the atmosphere, leading to changes in radiative properties and climate change, and modification of the ozone layer, leading to changes in ultraviolet radiation reaching the Earth. This volume provides accurate, unbiased, policy-relevant information and is designed to serve the aviation industry and the expert and policymaking communities.

Radiative Forcing of Climate Change

Radiative Forcing of Climate Change PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309133505
Category : Science
Languages : en
Pages : 222

Get Book Here

Book Description
Changes in climate are driven by natural and human-induced perturbations of the Earth's energy balance. These climate drivers or "forcings" include variations in greenhouse gases, aerosols, land use, and the amount of energy Earth receives from the Sun. Although climate throughout Earth's history has varied from "snowball" conditions with global ice cover to "hothouse" conditions when glaciers all but disappeared, the climate over the past 10,000 years has been remarkably stable and favorable to human civilization. Increasing evidence points to a large human impact on global climate over the past century. The report reviews current knowledge of climate forcings and recommends critical research needed to improve understanding. Whereas emphasis to date has been on how these climate forcings affect global mean temperature, the report finds that regional variation and climate impacts other than temperature deserve increased attention.

Transportation in a Climate-Constrained World

Transportation in a Climate-Constrained World PDF Author: Andreas Schafer
Publisher: MIT Press
ISBN: 0262296896
Category : Science
Languages : en
Pages : 357

Get Book Here

Book Description
A discussion of the opportunities and challenges involved mitigating greenhouse gas emissions from passenger travel. In the nineteenth century, horse transportation consumed vast amounts of land for hay production, and the intense traffic and ankle-deep manure created miserable living conditions in urban centers. The introduction of the horseless carriage solved many of these problems but has created others. Today another revolution in transportation seems overdue. Transportation consumes two-thirds of the world's petroleum and has become the largest contributor to global environmental change. Most of this increase in scale can be attributed to the strong desire for personal mobility that comes with economic growth. InTransportation in a Climate-Constrained World, the authors present the first integrated assessment of the factors affecting greenhouse gas (GHG) emissions from passenger transportation. They examine such topics as past and future travel demand; the influence of personal and business choices on passenger travel's climate impact; technologies and alternative fuels that may become available to mitigate GHG emissions from passenger transport; and policies that would promote a more sustainable transportation system. And most important, taking into account all of these options are taken together, they consider how to achieve a sustainable transportation system in the next thirty to fifty years.

Carbon constraint in the Mediterranean

Carbon constraint in the Mediterranean PDF Author: Louis Boisgibault
Publisher: Louis Boisgibault
ISBN:
Category :
Languages : en
Pages : 56

Get Book Here

Book Description
European Union's energy goals for 2020, inclusion of aviation in EU ETS since 2012 and the important increase of CO2 emissions in Southern Mediterranean countries, all justify to pay careful attention to the challenges of the carbon constraint at the Euro-Mediterranean scale. The notion of "carbon constraint" stems from the application of the United Nations Framework Convention on Climate Change (UNFCCC) and from the Kyoto Protocol that resulted in the implementation of the EU ETS in European Union countries. Contrary to European countries that committed to emissions reductions goals ("Annex I countries" of UNFCCC and "Annex B countries" of Kyoto Protocol), Southern and Eastern Mediterranean countries (SEMC), like other emergent countries, apply the principle of "common but differentiated responsibility" that exempt them from adopting any binding emission reductions goals. The extension of the EU ETS, with the auctioning of emission credits as of 2013, and the evolution, even though difficult, of international climate negotiations might nevertheless modify the situation of unbalanced commitments that prevails between Northern countries and Southern countries (section 1). Moreover, if the carbon constraint for European countries remains today soft, it might on a short or medium term generate several economic and social impacts, and potentially on the regional trade (section 2). Several green initiatives undertaken on the Southern shore to develop environmental policies and new carbon market mechanisms have to be supported so as to limit these negative impacts and to implement a virtuous regional momentum (section 3).

Addressing Uncertainty about Future Airport Activity Levels in Airport Decision Making

Addressing Uncertainty about Future Airport Activity Levels in Airport Decision Making PDF Author: Ian S. Kincaid
Publisher: Transportation Research Board
ISBN: 030925857X
Category : Transportation
Languages : en
Pages : 147

Get Book Here

Book Description
This report provides a guidebook on how to develop air traffic forecasts in the face of a broad range of uncertainties. It is targeted at airport operators, planners, designers, and other stakeholders involved in planning, managing, and financing of airports, and it provides a systems analysis methodology that augments standard master planning and strategic planning approaches. This methodology includes a set of tools for improving the understanding and application of risk and uncertainty in air traffic forecasts as well as for increasing overall effectiveness of airport planning and decision making. In developing the guidebook, the research team studied existing methods used in traditional master planning as well as methods that directly address risk and uncertainty, and based on that fundamental research, they created a straightforward and transparent systems analysis methodology for expanding and improving traditional planning practices, applicable through a wide range of airport sizes. The methods presented were tested through a series of case study applications that also helped to identify additional opportunities for future research and long-term enhancements.

Atmospheric Effects of Aviation

Atmospheric Effects of Aviation PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309064252
Category : Technology & Engineering
Languages : en
Pages : 55

Get Book Here

Book Description
Aviation is an integral part of the global transportation network, and the number of flights worldwide is expected to grow rapidly in the coming decades. Yet, the effects that subsonic aircraft emissions may be having upon atmospheric composition and climate are not fully understood. To study such issues, NASA sponsors the Atmospheric Effects of Aviation Program (AEAP). The NRC Panel on Atmospheric Effects of Aviation is charged to evaluate AEAP, and in this report, the panel is focusing on the subsonic assessment (SASS) component of the program. This evaluation of SASS/AEAP was based on the report Atmospheric Effects of Subsonic Aircraft: Interim Assessment Report of the Advanced Sub-sonic Technology Program, on a strategic plan developed by SASS managers, and on other relevant documents.