Interdisciplinary Mathematics: Constrained mechanics and lie theory

Interdisciplinary Mathematics: Constrained mechanics and lie theory PDF Author: Robert Hermann
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 324

Get Book Here

Book Description

Interdisciplinary Mathematics: Constrained mechanics and lie theory

Interdisciplinary Mathematics: Constrained mechanics and lie theory PDF Author: Robert Hermann
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 324

Get Book Here

Book Description


Constrained Mechanics and Lie Theory

Constrained Mechanics and Lie Theory PDF Author: Robert Hermann
Publisher: Math-Sci Press
ISBN: 9780915692439
Category : Mathematics
Languages : en
Pages : 288

Get Book Here

Book Description


Lie Groups, Physics, and Geometry

Lie Groups, Physics, and Geometry PDF Author: Robert Gilmore
Publisher: Cambridge University Press
ISBN: 113946907X
Category : Science
Languages : en
Pages : 5

Get Book Here

Book Description
Describing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.

Lie Theory and Geometry

Lie Theory and Geometry PDF Author: Jean-Luc Brylinski
Publisher: Springer Science & Business Media
ISBN: 1461202612
Category : Mathematics
Languages : en
Pages : 629

Get Book Here

Book Description
This volume, dedicated to Bertram Kostant on the occasion of his 65th birthday, is a collection of 22 invited papers by leading mathematicians working in Lie theory, geometry, algebra, and mathematical physics. Kostant’s fundamental work in all these areas has provided deep new insights and connections, and has created new fields of research. The papers gathered here present original research articles as well as expository papers, broadly reflecting the range of Kostant’s work.

Galois' Theory Of Algebraic Equations (Second Edition)

Galois' Theory Of Algebraic Equations (Second Edition) PDF Author: Jean-pierre Tignol
Publisher: World Scientific Publishing Company
ISBN: 9814704717
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
The book gives a detailed account of the development of the theory of algebraic equations, from its origins in ancient times to its completion by Galois in the nineteenth century. The appropriate parts of works by Cardano, Lagrange, Vandermonde, Gauss, Abel, and Galois are reviewed and placed in their historical perspective, with the aim of conveying to the reader a sense of the way in which the theory of algebraic equations has evolved and has led to such basic mathematical notions as 'group' and 'field'. A brief discussion of the fundamental theorems of modern Galois theory and complete proofs of the quoted results are provided, and the material is organized in such a way that the more technical details can be skipped by readers who are interested primarily in a broad survey of the theory.In this second edition, the exposition has been improved throughout and the chapter on Galois has been entirely rewritten to better reflect Galois' highly innovative contributions. The text now follows more closely Galois' memoir, resorting as sparsely as possible to anachronistic modern notions such as field extensions. The emerging picture is a surprisingly elementary approach to the solvability of equations by radicals, and yet is unexpectedly close to some of the most recent methods of Galois theory.

C-O-R Generalized Functions, Current Algebras, and Control

C-O-R Generalized Functions, Current Algebras, and Control PDF Author: Robert Hermann
Publisher: Math Science Press
ISBN: 9780915692460
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description


Mathematical Control Theory

Mathematical Control Theory PDF Author: John B. Baillieul
Publisher: Springer Science & Business Media
ISBN: 1461214165
Category : Mathematics
Languages : en
Pages : 389

Get Book Here

Book Description
This volume on mathematical control theory contains high quality articles covering the broad range of this field. The internationally renowned authors provide an overview of many different aspects of control theory, offering a historical perspective while bringing the reader up to the very forefront of current research.

Differential Forms in Mathematical Physics

Differential Forms in Mathematical Physics PDF Author:
Publisher: Elsevier
ISBN: 0080875246
Category : Mathematics
Languages : en
Pages : 504

Get Book Here

Book Description
Differential Forms in Mathematical Physics

Lie Groups, Lie Algebras, and Some of Their Applications

Lie Groups, Lie Algebras, and Some of Their Applications PDF Author: Robert Gilmore
Publisher: Courier Corporation
ISBN: 0486131564
Category : Mathematics
Languages : en
Pages : 610

Get Book Here

Book Description
This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.

Quantization of Gauge Systems

Quantization of Gauge Systems PDF Author: Marc Henneaux
Publisher: Princeton University Press
ISBN: 9780691037691
Category : Mathematics
Languages : en
Pages : 556

Get Book Here

Book Description
This book is a systematic study of the classical and quantum theories of gauge systems. It starts with Dirac's analysis showing that gauge theories are constrained Hamiltonian systems. The classical foundations of BRST theory are then laid out with a review of the necessary concepts from homological algebra. Reducible gauge systems are discussed, and the relationship between BRST cohomology and gauge invariance is carefully explained. The authors then proceed to the canonical quantization of gauge systems, first without ghosts (reduced phase space quantization, Dirac method) and second in the BRST context (quantum BRST cohomology). The path integral is discussed next. The analysis covers indefinite metric systems, operator insertions, and Ward identities. The antifield formalism is also studied and its equivalence with canonical methods is derived. The examples of electromagnetism and abelian 2-form gauge fields are treated in detail. The book gives a general and unified treatment of the subject in a self-contained manner. Exercises are provided at the end of each chapter, and pedagogical examples are covered in the text.