Constant Mean Curvature Surfaces with Boundary

Constant Mean Curvature Surfaces with Boundary PDF Author: Rafael López
Publisher: Springer Science & Business Media
ISBN: 3642396267
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields. While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of “compact surfaces with boundaries,” narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs. The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems.

Constant Mean Curvature Surfaces with Boundary

Constant Mean Curvature Surfaces with Boundary PDF Author: Rafael López
Publisher: Springer Science & Business Media
ISBN: 3642396267
Category : Mathematics
Languages : en
Pages : 296

Get Book Here

Book Description
The study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields. While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of “compact surfaces with boundaries,” narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs. The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems.

Surfaces with Constant Mean Curvature

Surfaces with Constant Mean Curvature PDF Author: Katsuei Kenmotsu
Publisher: American Mathematical Soc.
ISBN: 9780821834794
Category : Mathematics
Languages : en
Pages : 156

Get Book Here

Book Description
The mean curvature of a surface is an extrinsic parameter measuring how the surface is curved in the three-dimensional space. A surface whose mean curvature is zero at each point is a minimal surface, and it is known that such surfaces are models for soap film. There is a rich and well-known theory of minimal surfaces. A surface whose mean curvature is constant but nonzero is obtained when we try to minimize the area of a closed surface without changing the volume it encloses. An easy example of a surface of constant mean curvature is the sphere. A nontrivial example is provided by the constant curvature torus, whose discovery in 1984 gave a powerful incentive for studying such surfaces. Later, many examples of constant mean curvature surfaces were discovered using various methods of analysis, differential geometry, and differential equations. It is now becoming clear that there is a rich theory of surfaces of constant mean curvature. In this book, the author presents numerous examples of constant mean curvature surfaces and techniques for studying them. Many finely rendered figures illustrate the results and allow the reader to visualize and better understand these beautiful objects. The book is suitable for advanced undergraduates, graduate students and research mathematicians interested in analysis and differential geometry.

Constant Mean Curvature Surfaces in Homogeneous Manifolds

Constant Mean Curvature Surfaces in Homogeneous Manifolds PDF Author: Julia Plehnert
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832532064
Category : Mathematics
Languages : en
Pages : 94

Get Book Here

Book Description
In this dissertation new constant mean curvature surfaces in homogeneous 3-manifolds are constructed. They arise as sister surfaces of Plateau solutions. The first example, a two-parameter family of MC H surfaces in ∑(k) x R with H ∈ [0,1/2] and k + 4H2 ≤ 0, has genus 0,2 k ends and k-fold dihedral symmetry, k ≥ 2. The existence of the minimal sister follows from the construction of a mean convex domain. The projection of the domain is non-convex. The second example is an MC 1/2 surface in H2 ∈ R with k ends, genus 1 and k-fold dihedral symmetry, k ≥ 3. One has to solve two period problems in the construction. The first period guarantees that the surface has exactly one horizontal symmetry. For the second period the control of a horizontal mirror curve proves the dihedral symmetry. For H=1/2 all surfaces are Alexandrov-embedded.

The Motion of a Surface by Its Mean Curvature. (MN-20)

The Motion of a Surface by Its Mean Curvature. (MN-20) PDF Author: Kenneth A. Brakke
Publisher: Princeton University Press
ISBN: 1400867436
Category : Mathematics
Languages : en
Pages : 258

Get Book Here

Book Description
Kenneth Brakke studies in general dimensions a dynamic system of surfaces of no inertial mass driven by the force of surface tension and opposed by a frictional force proportional to velocity. He formulates his study in terms of varifold surfaces and uses the methods of geometric measure theory to develop a mathematical description of the motion of a surface by its mean curvature. This mathematical description encompasses, among other subtleties, those of changing geometries and instantaneous mass losses. Originally published in 1978. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Minimal Surfaces I

Minimal Surfaces I PDF Author: Ulrich Dierkes
Publisher: Springer Science & Business Media
ISBN: 3662027917
Category : Mathematics
Languages : en
Pages : 528

Get Book Here

Book Description
Minimal surfaces I is an introduction to the field of minimal surfaces and apresentation of the classical theory as well as of parts of the modern development centered around boundary value problems. Part II deals with the boundary behaviour of minimal surfaces. Part I is particularly apt for students who want to enter this interesting area of analysis and differential geometry which during the last 25 years of mathematical research has been very active and productive. Surveys of various subareas will lead the student to the current frontiers of knowledge and can alsobe useful to the researcher. The lecturer can easily base courses of one or two semesters on differential geometry on Vol. 1, as many topics are worked out in great detail. Numerous computer-generated illustrations of old and new minimal surfaces are included to support intuition and imagination. Part 2 leads the reader up to the regularity theory fornonlinear elliptic boundary value problems illustrated by a particular and fascinating topic. There is no comparably comprehensive treatment of the problem of boundary regularity of minimal surfaces available in book form. This long-awaited book is a timely and welcome addition to the mathematical literature.

Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems

Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems PDF Author: Frederic Hélein
Publisher: Birkhäuser
ISBN: 3034883307
Category : Mathematics
Languages : en
Pages : 123

Get Book Here

Book Description
This book intends to give an introduction to harmonic maps between a surface and a symmetric manifold and constant mean curvature surfaces as completely integrable systems. The presentation is accessible to undergraduate and graduate students in mathematics but will also be useful to researchers. It is among the first textbooks about integrable systems, their interplay with harmonic maps and the use of loop groups, and it presents the theory, for the first time, from the point of view of a differential geometer. The most important results are exposed with complete proofs (except for the last two chapters, which require a minimal knowledge from the reader). Some proofs have been completely rewritten with the objective, in particular, to clarify the relation between finite mean curvature tori, Wente tori and the loop group approach - an aspect largely neglected in the literature. The book helps the reader to access the ideas of the theory and to acquire a unified perspective of the subject.

The Problem of Plateau

The Problem of Plateau PDF Author: Themistocles M. Rassias
Publisher: World Scientific
ISBN: 9789810205560
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
This volume consists of papers written by eminent scientists from the international mathematical community, who present the latest information concerning the problem of Plateau after its classical solution by Jesse Douglas and Tibor Rad¢. The contributing papers provide insight and perspective on various problems in modern topics of Calculus of Variations, Global Differential Geometry and Global Nonlinear Analysis as related to the problem of Plateau.

A Course in Minimal Surfaces

A Course in Minimal Surfaces PDF Author: Tobias Holck Colding
Publisher: American Mathematical Society
ISBN: 1470476401
Category : Mathematics
Languages : en
Pages : 330

Get Book Here

Book Description
Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.

Minimal Surfaces: Integrable Systems and Visualisation

Minimal Surfaces: Integrable Systems and Visualisation PDF Author: Tim Hoffmann
Publisher: Springer Nature
ISBN: 3030685411
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
This book collects original peer-reviewed contributions to the conferences organised by the international research network “Minimal surfaces: Integrable Systems and Visualization” financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.

Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations

Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations PDF Author: Giovanni Bellettini
Publisher: Springer
ISBN: 8876424296
Category : Mathematics
Languages : en
Pages : 336

Get Book Here

Book Description
The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.