Conducting Polyelectrolyte Complexes

Conducting Polyelectrolyte Complexes PDF Author: Michael A. Leaf
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Decades of progress have yielded a tremendous variety of organic electronics, with great strides in the development of photovoltaics, thermoelectrics and other flexible devices. Ubiquitous in these research areas are films of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT: PSS), a complex of oppositely-charged polyelectrolytes initially suspended in water before film formation. This material has high electronic conductivity and good water processability. Pristine film conductivity is somewhat low, but is dramatically enhanced through simple treatments like ionic liquid addition or shear. Can this enhancement be understood so that further optimization might render PEDOT: PSS commercially viable? PEDOT: PSS is a complicated material, with electrostatic complexation between PEDOT and oppositely-charged PSS, dissociated counterions and an inherent insolubility of PEDOT in water. These characteristics among others muddle the already challenging task of understanding the film formation process. In this doctoral thesis work, the goal is to build on our fundamental understanding of PEDOT: PSS and conducting polyelectrolyte complexes in general. The structural aspects of PEDOT: PSS dispersions are studied upon the addition of four conductivity enhancers: EMIM BF4, NaCl, DMSO and EG. PEDOT: PSS collects into many-chain charged micro-gels that are hundreds of nanometers in scale. An observed sensitivity to ionic strength underscores the dominance of electrostatic forces in PEDOT: PSS solutions. Micro-gels can macroscopically percolate or phase segregate, much like associating polymers. PEDOT: PSS conduction predominatly occurs electronically in films and ionically in solutions. When the four enhancers are introduced, no correlation is found between changes to film conductivity and changes to solution phenomenology. This apparent lack of correlation strengthens the widely-held belief that conductivity enhancement is closely linked to PEDOT ordering. Langevin dynamics simulations show that PEDOT clusters into stacked domains at high polymer concentration and ionic strength, and this clustering can be explained as an interplay between hydrophobic and electrostatic drivers. A new theory of polyelectrolyte complex phase separation is proposed, and it relies on induced dipoles formed from the association of oppositely-charged backbones. It predicts the phase behavior for model systems, but does not apply directly to PEDOT: PSS. Nevertheless, it gives insight into the role of dipoles for complex coacervation.

Conducting Polyelectrolyte Complexes

Conducting Polyelectrolyte Complexes PDF Author: Michael A. Leaf
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Decades of progress have yielded a tremendous variety of organic electronics, with great strides in the development of photovoltaics, thermoelectrics and other flexible devices. Ubiquitous in these research areas are films of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT: PSS), a complex of oppositely-charged polyelectrolytes initially suspended in water before film formation. This material has high electronic conductivity and good water processability. Pristine film conductivity is somewhat low, but is dramatically enhanced through simple treatments like ionic liquid addition or shear. Can this enhancement be understood so that further optimization might render PEDOT: PSS commercially viable? PEDOT: PSS is a complicated material, with electrostatic complexation between PEDOT and oppositely-charged PSS, dissociated counterions and an inherent insolubility of PEDOT in water. These characteristics among others muddle the already challenging task of understanding the film formation process. In this doctoral thesis work, the goal is to build on our fundamental understanding of PEDOT: PSS and conducting polyelectrolyte complexes in general. The structural aspects of PEDOT: PSS dispersions are studied upon the addition of four conductivity enhancers: EMIM BF4, NaCl, DMSO and EG. PEDOT: PSS collects into many-chain charged micro-gels that are hundreds of nanometers in scale. An observed sensitivity to ionic strength underscores the dominance of electrostatic forces in PEDOT: PSS solutions. Micro-gels can macroscopically percolate or phase segregate, much like associating polymers. PEDOT: PSS conduction predominatly occurs electronically in films and ionically in solutions. When the four enhancers are introduced, no correlation is found between changes to film conductivity and changes to solution phenomenology. This apparent lack of correlation strengthens the widely-held belief that conductivity enhancement is closely linked to PEDOT ordering. Langevin dynamics simulations show that PEDOT clusters into stacked domains at high polymer concentration and ionic strength, and this clustering can be explained as an interplay between hydrophobic and electrostatic drivers. A new theory of polyelectrolyte complex phase separation is proposed, and it relies on induced dipoles formed from the association of oppositely-charged backbones. It predicts the phase behavior for model systems, but does not apply directly to PEDOT: PSS. Nevertheless, it gives insight into the role of dipoles for complex coacervation.

Conducting Polymers, Fundamentals and Applications

Conducting Polymers, Fundamentals and Applications PDF Author: Prasanna Chandrasekhar
Publisher: Springer Science & Business Media
ISBN: 1461552451
Category : Technology & Engineering
Languages : en
Pages : 740

Get Book Here

Book Description
This book deals with the practical fundamentals and applications of conducting polymers. Written from a pedagogical point of view and at a very basic level, it provides a thorough grounding in CPs ideal for further work, as a reference, or as a supplementary course text.

Studies of Inter-polymer Complexes of Conducting Polymers

Studies of Inter-polymer Complexes of Conducting Polymers PDF Author: Wenguang Li
Publisher:
ISBN:
Category : Polyelectrolytes
Languages : en
Pages : 320

Get Book Here

Book Description


PEDOT

PEDOT PDF Author: Andreas Elschner
Publisher: CRC Press
ISBN: 1420069128
Category : Technology & Engineering
Languages : en
Pages : 380

Get Book Here

Book Description
While there is information available in handbooks on polythiophene chemistry and physics, until now, few if any books have focused exclusively on the most forwardly developed electrically conductive polymer, Poly (3,4-ethylenedioxythiophene)-otherwise known as PEDOT. This resource provides full chemical, physical, and technical information about this important conducting polymer, discussing basic knowledge and exploring its technical applications. Presented information is based on information generated at universities and through academic research, as well as by industrial scientists, providing a complete picture of the experimental and the practical aspects of this important polymer.

Polyelectrolyte Complexes in the Dispersed and Solid State II

Polyelectrolyte Complexes in the Dispersed and Solid State II PDF Author: Martin Müller
Publisher: Springer
ISBN: 3642407463
Category : Technology & Engineering
Languages : en
Pages : 269

Get Book Here

Book Description
Polyelectrolyte Complexes for Tailoring of Wood Fibre Surfaces. Polyelectrolyte Complexes in Flocculation Applications. Spontaneous Assembly and Induced Aggregation of Food Proteins. Polyelectrolyte Complexes of DNA and Polycations as Gene Delivery Vectors. Sizing, Shaping and Pharmaceutical Applications of Polyelectrolyte Complex Nanoparticles.

Molecular Complexes of Polyaniline and Polyelectrolyte

Molecular Complexes of Polyaniline and Polyelectrolyte PDF Author: Linfeng Sun
Publisher:
ISBN:
Category : Aniline
Languages : en
Pages : 446

Get Book Here

Book Description


Handbook of Conducting Polymers, 2 Volume Set

Handbook of Conducting Polymers, 2 Volume Set PDF Author: Terje A. Skotheim
Publisher: CRC Press
ISBN: 1420095293
Category : Technology & Engineering
Languages : en
Pages : 1692

Get Book Here

Book Description
Learn how recent advances are fueling new possibilities in textiles, optics, electronics, and biomedicine! As the field of conjugated, electrically conducting, and electroactive polymers has grown, the Handbook of Conducting Polymers has been there to document and celebrate these changes along the way. Now split into two vo

Applications of Electroactive Polymers

Applications of Electroactive Polymers PDF Author: Bruno Scrosati
Publisher: Springer Science & Business Media
ISBN: 9780412414305
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
Electroactive polymers have been the object of increasing academic and industrial interest and in the past ten to fifteen years substantial progress has been achieved in the development and the characterization of this important new class of conducting materials. These materials are usually classified in two large groups, according to the mode of their electric transport. One group includes polymers having transport almost exclusively of the ionic type and they are often called 'polymer electrolytes' or, in a broader way, 'polymer ionics'. The other group includes polymeric materials where the transport mechanism is mainly electronic in nature and which are commonly termed 'conducting polymers'. Ionically conducting polymers or polymer ionics may be typically described as polar macromolecular solids in which one or more of a wide range of salts has been dissolved. The most classic example is the combina tion of poly(ethylene oxide), PEO, and lithium salts, LiX. These PEO-LiX polymer ionics were first described and proposed for applications just over ten years ago. The practical relevance of these new materials was im mediately recognized and in the course of a few years the field expanded tremendously with the involvement of many academic and industrial lab oratories. Following this diversified research activity, the ionic transport mechanism in polymer ionics was soon established and this has led to the development of new host polymers of various types, new salts and advanced polymer architectures which have enabled room temperature conductivity to be raised by several orders of magnitude.

Electrically Conductive Polymers and Polymer Composites

Electrically Conductive Polymers and Polymer Composites PDF Author: Anish Khan
Publisher: John Wiley & Sons
ISBN: 3527342893
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book Here

Book Description
A comprehensive and up-to-date overview of the latest research trends in conductive polymers and polymer hybrids, summarizing recent achievements. The book begins by introducing conductive polymer materials and their classification, while subsequent chapters discuss the various syntheses, resulting properties and up-scaling as well as the important applications in biomedical and biotechnological fields, including biosensors and biodevices. The whole is rounded off by a look at future technological advances. The result is a well-structured, essential reference for beginners as well as experienced researchers.

Inter-polymer Complexes of Conducting Polymers

Inter-polymer Complexes of Conducting Polymers PDF Author: Zhexiong Tang
Publisher:
ISBN:
Category : Polyelectrolytes
Languages : en
Pages : 328

Get Book Here

Book Description