Computing Methods in Reactor Physics

Computing Methods in Reactor Physics PDF Author: Harold Greenspan
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 610

Get Book Here

Book Description


Nuclear Computational Science

Nuclear Computational Science PDF Author: Yousry Azmy
Publisher: Springer Science & Business Media
ISBN: 9048134110
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book Here

Book Description
Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational science and mathematical theory. Comprising eight chapters, Nuclear Computational Science: A Century in Review incorporates a number of carefully selected issues representing a variety of problems, providing the reader with a wealth of information in both a clear and concise manner. The comprehensive nature of the coverage and the stature of the contributing authors combine to make this a unique landmark publication. Targeting the medium to advanced level academic, this book will appeal to researchers and students with an interest in the progression of mathematical theory and its application to nuclear computational science.

Physics of Nuclear Reactors

Physics of Nuclear Reactors PDF Author: P. Mohanakrishnan
Publisher: Elsevier
ISBN: 012822441X
Category : Science
Languages : en
Pages : 786

Get Book Here

Book Description
Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 - 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis Covers experimental and operational physics with details on noise analysis and failed fuel detection

Reactor Physics: Methods and Applications

Reactor Physics: Methods and Applications PDF Author: Tengfei Zhang
Publisher: Frontiers Media SA
ISBN: 2889764575
Category : Technology & Engineering
Languages : en
Pages : 272

Get Book Here

Book Description


Computational Methods in Reactor Shielding

Computational Methods in Reactor Shielding PDF Author: James Wood
Publisher: Elsevier
ISBN: 1483148130
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
Computational Methods in Reactor Shielding deals with the mathematical processes involved in how to effectively control the dangerous effect of nuclear radiation. Reactor shielding is considered an important aspect in the operation of reactor systems to ensure the safety of personnel and others that can be directly or indirectly affected. Composed of seven chapters, the book discusses ionizing radiation and how it aids in the control and containment of radioactive substances that are considered harmful to all living things. The text also outlines the necessary radiation quantities and units that are needed for a systemic control of shielding and presents an examination of the main sources of nuclear radiation. A discussion of the gamma photon cross sections and an introduction to BMIX, a computer program used in illustrating a technique in identifying the gamma ray build-up factor for a reactor shield, are added. The selection also discusses various mathematical representations and areas of shielding theory that are being used in radiation shielding. The book is of great value to those involved in the development and implementation of systems to minimize and control the dangerous and lethal effect of radiation.

Computational Methods in Transport

Computational Methods in Transport PDF Author: Frank Graziani
Publisher: Springer Science & Business Media
ISBN: 3540281258
Category : Computers
Languages : en
Pages : 539

Get Book Here

Book Description
Thereexistawiderangeofapplicationswhereasigni?cantfractionofthe- mentum and energy present in a physical problem is carried by the transport of particles. Depending on the speci?capplication, the particles involved may be photons, neutrons, neutrinos, or charged particles. Regardless of which phenomena is being described, at the heart of each application is the fact that a Boltzmann like transport equation has to be solved. The complexity, and hence expense, involved in solving the transport problem can be understood by realizing that the general solution to the 3D Boltzmann transport equation is in fact really seven dimensional: 3 spatial coordinates, 2 angles, 1 time, and 1 for speed or energy. Low-order appro- mations to the transport equation are frequently used due in part to physical justi?cation but many in cases, simply because a solution to the full tra- port problem is too computationally expensive. An example is the di?usion equation, which e?ectively drops the two angles in phase space by assuming that a linear representation in angle is adequate. Another approximation is the grey approximation, which drops the energy variable by averaging over it. If the grey approximation is applied to the di?usion equation, the expense of solving what amounts to the simplest possible description of transport is roughly equal to the cost of implicit computational ?uid dynamics. It is clear therefore, that for those application areas needing some form of transport, fast, accurate and robust transport algorithms can lead to an increase in overall code performance and a decrease in time to solution.

Advances in Nuclear Science and Technology

Advances in Nuclear Science and Technology PDF Author: Jeffery Lewins
Publisher: Springer Science & Business Media
ISBN: 9780306436147
Category : Science
Languages : en
Pages : 322

Get Book Here

Book Description
This twenty-fifth volume in a distinguished series addresses a range of topics including: the difficult matter of questioning scientific hypotheses in court the use of Monte Carlo simulation to evaluate time-dependent development and to study system reliability in nuclear reactors of considerable complexity the genetic optimization algorith wavelet analysis ergonomic design of safer and more efficient plant control rooms.

Nuclear Reactor Physics

Nuclear Reactor Physics PDF Author: Weston M. Stacey
Publisher: John Wiley & Sons
ISBN: 3527406794
Category : Science
Languages : en
Pages : 737

Get Book Here

Book Description
Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developments.

Physics of High-Temperature Reactors

Physics of High-Temperature Reactors PDF Author: Luigi Massimo
Publisher: Elsevier
ISBN: 1483280284
Category : Technology & Engineering
Languages : en
Pages : 249

Get Book Here

Book Description
Physics of High-Temperature Reactors focuses on the physics of high-temperature reactors (HTRs) and covers topics ranging from fuel cycles and refueling strategies to neutron cross-sections, transport and diffusion theory, and resonance absorption. Spectrum calculations and cross-section averaging are also discussed, along with the temperature coefficient and reactor control. Comprised of 16 chapters, this book begins with a general description of the HTR core as well as its performance limitations. The next chapter deals with general considerations about HTR physics, including quantities to be determined and optimized in the design of nuclear reactors. Potential scattering and resonance reactions between neutrons and atomic nuclei are then considered, together with basic aspects of transport and diffusion theory. Subsequent chapters explore methods for solving the diffusion equation; slowing-down and neutron thermalization in graphite; HTR core design, fuel management, and cost calculations; and core dynamics and accident analysis. The final chapter describes the sequence of reactor design calculations. This monograph is written primarily for students of HTR physics who are preparing to enter the field as well as technologists of other disciplines who are working on the system.

Physics of Nuclear Reactors

Physics of Nuclear Reactors PDF Author: P. Mohanakrishnan
Publisher: Academic Press
ISBN: 0128224428
Category : Science
Languages : en
Pages : 788

Get Book Here

Book Description
Physics of Nuclear Reactors presents a comprehensive analysis of nuclear reactor physics. Editors P. Mohanakrishnan, Om Pal Singh, and Kannan Umasankari and a team of expert contributors combine their knowledge to guide the reader through a toolkit of methods for solving transport equations, understanding the physics of reactor design principles, and developing reactor safety strategies. The inclusion of experimental and operational reactor physics makes this a unique reference for those working and researching nuclear power and the fuel cycle in existing power generation sites and experimental facilities. The book also includes radiation physics, shielding techniques and an analysis of shield design, neutron monitoring and core operations. Those involved in the development and operation of nuclear reactors and the fuel cycle will gain a thorough understanding of all elements of nuclear reactor physics, thus enabling them to apply the analysis and solution methods provided to their own work and research. This book looks to future reactors in development and analyzes their status and challenges before providing possible worked-through solutions. Cover image: Kaiga Atomic Power Station Units 1 – 4, Karnataka, India. In 2018, Unit 1 of the Kaiga Station surpassed the world record of continuous operation, at 962 days. Image courtesy of DAE, India. - Includes methods for solving neutron transport problems, nuclear cross-section data and solutions of transport theory - Dedicates a chapter to reactor safety that covers mitigation, probabilistic safety assessment and uncertainty analysis - Covers experimental and operational physics with details on noise analysis and failed fuel detection