Author: Rubin H. Landau
Publisher: Wiley-Interscience
ISBN: 9780471532712
Category : Computers
Languages : en
Pages : 416
Book Description
A scientist’s and engineer’s guide to Workstations and Supercomputers Crack the Unix code and put its power to work for you. If you’re seeking such clear-cut guidance, your search will end with the first Unix survival manual designed specifically for practicing scientists and engineers like you. Avoiding the narrower concerns and complicated jargon of computer science, this guide shows you how to master the complexities of accomplishing computer projects—from start to finish—predominantly under a Unix operating system. With the help of clarifying examples and tutorials, you’ll learn how to write and organize files and programs as well as run, debug, and visualize the results of scientific programs on workstations and supercomputers. At the same time, you’ll discover how to complete these projects while working on other systems and on other versions of Unix. This user-friendly guide offers you the basics on Unix commands and on setting up and using workstations, and goes on to simplify the once-daunting tasks of transferring files between workstations and adjusting X Windows. You’ll also gain a solid grasp of more advanced Unix tools, such as its sophisticated editing, filing, and debugging capabilities, and of programming computers with differing architectures. Complete with accompanying computer disk packed with practice programs and data files, this book will increase your creativity, productivity, and effectiveness on the job by demonstrating how you can quickly learn to wield one of your most formidable tools—the Unix system. Covers all major versions of Unix and systems from major hardware vendors, including: System V, BSD, IBM’s AIX, SUNOS, HP-UX, Unicos.
A Scientist's and Engineer's Guide to Workstations and Supercomputers
Author: Rubin H. Landau
Publisher: Wiley-Interscience
ISBN: 9780471532712
Category : Computers
Languages : en
Pages : 416
Book Description
A scientist’s and engineer’s guide to Workstations and Supercomputers Crack the Unix code and put its power to work for you. If you’re seeking such clear-cut guidance, your search will end with the first Unix survival manual designed specifically for practicing scientists and engineers like you. Avoiding the narrower concerns and complicated jargon of computer science, this guide shows you how to master the complexities of accomplishing computer projects—from start to finish—predominantly under a Unix operating system. With the help of clarifying examples and tutorials, you’ll learn how to write and organize files and programs as well as run, debug, and visualize the results of scientific programs on workstations and supercomputers. At the same time, you’ll discover how to complete these projects while working on other systems and on other versions of Unix. This user-friendly guide offers you the basics on Unix commands and on setting up and using workstations, and goes on to simplify the once-daunting tasks of transferring files between workstations and adjusting X Windows. You’ll also gain a solid grasp of more advanced Unix tools, such as its sophisticated editing, filing, and debugging capabilities, and of programming computers with differing architectures. Complete with accompanying computer disk packed with practice programs and data files, this book will increase your creativity, productivity, and effectiveness on the job by demonstrating how you can quickly learn to wield one of your most formidable tools—the Unix system. Covers all major versions of Unix and systems from major hardware vendors, including: System V, BSD, IBM’s AIX, SUNOS, HP-UX, Unicos.
Publisher: Wiley-Interscience
ISBN: 9780471532712
Category : Computers
Languages : en
Pages : 416
Book Description
A scientist’s and engineer’s guide to Workstations and Supercomputers Crack the Unix code and put its power to work for you. If you’re seeking such clear-cut guidance, your search will end with the first Unix survival manual designed specifically for practicing scientists and engineers like you. Avoiding the narrower concerns and complicated jargon of computer science, this guide shows you how to master the complexities of accomplishing computer projects—from start to finish—predominantly under a Unix operating system. With the help of clarifying examples and tutorials, you’ll learn how to write and organize files and programs as well as run, debug, and visualize the results of scientific programs on workstations and supercomputers. At the same time, you’ll discover how to complete these projects while working on other systems and on other versions of Unix. This user-friendly guide offers you the basics on Unix commands and on setting up and using workstations, and goes on to simplify the once-daunting tasks of transferring files between workstations and adjusting X Windows. You’ll also gain a solid grasp of more advanced Unix tools, such as its sophisticated editing, filing, and debugging capabilities, and of programming computers with differing architectures. Complete with accompanying computer disk packed with practice programs and data files, this book will increase your creativity, productivity, and effectiveness on the job by demonstrating how you can quickly learn to wield one of your most formidable tools—the Unix system. Covers all major versions of Unix and systems from major hardware vendors, including: System V, BSD, IBM’s AIX, SUNOS, HP-UX, Unicos.
Scientific Programming and Computer Architecture
Author: Divakar Viswanath
Publisher: MIT Press
ISBN: 0262036290
Category : Computers
Languages : en
Pages : 625
Book Description
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
Publisher: MIT Press
ISBN: 0262036290
Category : Computers
Languages : en
Pages : 625
Book Description
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
Introduction to Julia Programming
Author: Sandeep Nagar
Publisher:
ISBN: 9781521233412
Category : Julia (Computer program language)
Languages : en
Pages : 282
Book Description
"Julia walks like Python and runs like C". This phrase explains why Julia is fast growing as the most favoured option for data analytics and numerical computation. Julia is the fastest modern open-source language for data science, machine learning and scientific computing. Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS or Stata combined with the speed, capacity and performance of C, C++ or Java.Present books is both for beginners and experienced users. While experienced users can use this as a reference, new users can learn the fine details of julia program's composition. CHAPETRS: 1. Introduction, 2. Object Oriented programming, 3. Basic maths with Julia, 4. Complex Numbers, 5. Rational and Irrational numbers, 6. Mathematical Functions, 7.Arrays, 8. Arrays for matrix operations, 9. String,s 10. Functions, 11. Control Flow, 12. Input Output, 13.
Publisher:
ISBN: 9781521233412
Category : Julia (Computer program language)
Languages : en
Pages : 282
Book Description
"Julia walks like Python and runs like C". This phrase explains why Julia is fast growing as the most favoured option for data analytics and numerical computation. Julia is the fastest modern open-source language for data science, machine learning and scientific computing. Julia provides the functionality, ease-of-use and intuitive syntax of R, Python, MATLAB, SAS or Stata combined with the speed, capacity and performance of C, C++ or Java.Present books is both for beginners and experienced users. While experienced users can use this as a reference, new users can learn the fine details of julia program's composition. CHAPETRS: 1. Introduction, 2. Object Oriented programming, 3. Basic maths with Julia, 4. Complex Numbers, 5. Rational and Irrational numbers, 6. Mathematical Functions, 7.Arrays, 8. Arrays for matrix operations, 9. String,s 10. Functions, 11. Control Flow, 12. Input Output, 13.
Introduction to High Performance Computing for Scientists and Engineers
Author: Georg Hager
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350
Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
Publisher: CRC Press
ISBN: 1439811938
Category : Computers
Languages : en
Pages : 350
Book Description
Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author
Computers and programming guide por scientists and engineers
Author: Donald D. Spencer
Publisher:
ISBN:
Category : Computadores electronicos digitales
Languages : en
Pages : 463
Book Description
Publisher:
ISBN:
Category : Computadores electronicos digitales
Languages : en
Pages : 463
Book Description
Computer Engineering for Babies
Author: Chase Roberts
Publisher:
ISBN: 9781735208701
Category :
Languages : en
Pages : 0
Book Description
An introduction to computer engineering for babies. Learn basic logic gates with hands on examples of buttons and an output LED.
Publisher:
ISBN: 9781735208701
Category :
Languages : en
Pages : 0
Book Description
An introduction to computer engineering for babies. Learn basic logic gates with hands on examples of buttons and an output LED.
A Primer on Scientific Programming with Python
Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3662498871
Category : Computers
Languages : en
Pages : 942
Book Description
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Publisher: Springer
ISBN: 3662498871
Category : Computers
Languages : en
Pages : 942
Book Description
The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Cloud Computing for Science and Engineering
Author: Ian Foster
Publisher: MIT Press
ISBN: 0262037246
Category : Computers
Languages : en
Pages : 391
Book Description
A guide to cloud computing for students, scientists, and engineers, with advice and many hands-on examples. The emergence of powerful, always-on cloud utilities has transformed how consumers interact with information technology, enabling video streaming, intelligent personal assistants, and the sharing of content. Businesses, too, have benefited from the cloud, outsourcing much of their information technology to cloud services. Science, however, has not fully exploited the advantages of the cloud. Could scientific discovery be accelerated if mundane chores were automated and outsourced to the cloud? Leading computer scientists Ian Foster and Dennis Gannon argue that it can, and in this book offer a guide to cloud computing for students, scientists, and engineers, with advice and many hands-on examples. The book surveys the technology that underpins the cloud, new approaches to technical problems enabled by the cloud, and the concepts required to integrate cloud services into scientific work. It covers managing data in the cloud, and how to program these services; computing in the cloud, from deploying single virtual machines or containers to supporting basic interactive science experiments to gathering clusters of machines to do data analytics; using the cloud as a platform for automating analysis procedures, machine learning, and analyzing streaming data; building your own cloud with open source software; and cloud security. The book is accompanied by a website, Cloud4SciEng.org, that provides a variety of supplementary material, including exercises, lecture slides, and other resources helpful to readers and instructors.
Publisher: MIT Press
ISBN: 0262037246
Category : Computers
Languages : en
Pages : 391
Book Description
A guide to cloud computing for students, scientists, and engineers, with advice and many hands-on examples. The emergence of powerful, always-on cloud utilities has transformed how consumers interact with information technology, enabling video streaming, intelligent personal assistants, and the sharing of content. Businesses, too, have benefited from the cloud, outsourcing much of their information technology to cloud services. Science, however, has not fully exploited the advantages of the cloud. Could scientific discovery be accelerated if mundane chores were automated and outsourced to the cloud? Leading computer scientists Ian Foster and Dennis Gannon argue that it can, and in this book offer a guide to cloud computing for students, scientists, and engineers, with advice and many hands-on examples. The book surveys the technology that underpins the cloud, new approaches to technical problems enabled by the cloud, and the concepts required to integrate cloud services into scientific work. It covers managing data in the cloud, and how to program these services; computing in the cloud, from deploying single virtual machines or containers to supporting basic interactive science experiments to gathering clusters of machines to do data analytics; using the cloud as a platform for automating analysis procedures, machine learning, and analyzing streaming data; building your own cloud with open source software; and cloud security. The book is accompanied by a website, Cloud4SciEng.org, that provides a variety of supplementary material, including exercises, lecture slides, and other resources helpful to readers and instructors.
Python Programming and Numerical Methods
Author: Qingkai Kong
Publisher: Academic Press
ISBN: 0128195509
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online
Publisher: Academic Press
ISBN: 0128195509
Category : Technology & Engineering
Languages : en
Pages : 482
Book Description
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online
An Introduction to High-performance Scientific Computing
Author: Lloyd Dudley Fosdick
Publisher: MIT Press
ISBN: 9780262061810
Category : Computers
Languages : en
Pages : 838
Book Description
Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series
Publisher: MIT Press
ISBN: 9780262061810
Category : Computers
Languages : en
Pages : 838
Book Description
Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series