Author: W. O. Saxton
Publisher: Academic Press
ISBN: 1483284646
Category : Science
Languages : en
Pages : 302
Book Description
Computer Techniques for Image Processing in Electron Microscopy: Advances in Electronics and Electron Physics presents the sophisticated computer generated in processing the image. This book discusses the development of fast Fourier transform algorithms, which has led to the possibility of achieving a more reliable interpretation of electron micrographs by digital means. Organized into 10 chapters, this book begins with an overview of image formation in which the properties of the linear approximation are included. This text then reviews the available hardware and the basic mathematical methods of image processing in electron microscopy. Other chapters consider the constraints imposed on the image wave function by the objective lens aperture. This book discusses as well the properties of discrete Fourier transforms. The final chapter deals with a particular processing system called the Improc system. This book is a valuable resource for physicists and researcher workers who are interested in the study of image processing.
Computer Techniques for Image Processing in Electron Microscopy
Author: W. O. Saxton
Publisher: Academic Press
ISBN: 1483284646
Category : Science
Languages : en
Pages : 302
Book Description
Computer Techniques for Image Processing in Electron Microscopy: Advances in Electronics and Electron Physics presents the sophisticated computer generated in processing the image. This book discusses the development of fast Fourier transform algorithms, which has led to the possibility of achieving a more reliable interpretation of electron micrographs by digital means. Organized into 10 chapters, this book begins with an overview of image formation in which the properties of the linear approximation are included. This text then reviews the available hardware and the basic mathematical methods of image processing in electron microscopy. Other chapters consider the constraints imposed on the image wave function by the objective lens aperture. This book discusses as well the properties of discrete Fourier transforms. The final chapter deals with a particular processing system called the Improc system. This book is a valuable resource for physicists and researcher workers who are interested in the study of image processing.
Publisher: Academic Press
ISBN: 1483284646
Category : Science
Languages : en
Pages : 302
Book Description
Computer Techniques for Image Processing in Electron Microscopy: Advances in Electronics and Electron Physics presents the sophisticated computer generated in processing the image. This book discusses the development of fast Fourier transform algorithms, which has led to the possibility of achieving a more reliable interpretation of electron micrographs by digital means. Organized into 10 chapters, this book begins with an overview of image formation in which the properties of the linear approximation are included. This text then reviews the available hardware and the basic mathematical methods of image processing in electron microscopy. Other chapters consider the constraints imposed on the image wave function by the objective lens aperture. This book discusses as well the properties of discrete Fourier transforms. The final chapter deals with a particular processing system called the Improc system. This book is a valuable resource for physicists and researcher workers who are interested in the study of image processing.
Advanced Computing in Electron Microscopy
Author: Earl J. Kirkland
Publisher: Springer Science & Business Media
ISBN: 1441965335
Category : Science
Languages : en
Pages : 289
Book Description
Preface to Second Edition Several new topics have been added, some small errors have been corrected and some new references have been added in this edition. New topics include aberration corrected instruments, scanning confocal mode of operations, Bloch wave eigenvalue methods and parallel computing techniques. The ?rst edition - cluded a CD with computer programs, which is not included in this edition. - stead the associated programs will be available on an associated web site (currently people.ccmr.cornell.edu/ ̃kirkland,but may move as time goes on). I wish to thank Mick Thomas for preparing the specimen used to record the image in Fig.5.26 and to thank Stephen P. Meisburger for suggesting an interesting biological specimen to use in Fig.7.24. Again, I apologize in advance for leaving out some undoubtedlyoutstanding r- erences. I also apologize for the as yet undiscovered errors that remain in the text. Earl J. Kirkland, December 2009 Preface to First Edition Image simulation has become a common tool in HREM (High Resolution El- tron Microscopy) in recent years. However, the literature on the subject is scattered among many different journals and conference proceedings that have occurred in the last two or three decades. It is dif?cult for beginners to get started in this ?eld.
Publisher: Springer Science & Business Media
ISBN: 1441965335
Category : Science
Languages : en
Pages : 289
Book Description
Preface to Second Edition Several new topics have been added, some small errors have been corrected and some new references have been added in this edition. New topics include aberration corrected instruments, scanning confocal mode of operations, Bloch wave eigenvalue methods and parallel computing techniques. The ?rst edition - cluded a CD with computer programs, which is not included in this edition. - stead the associated programs will be available on an associated web site (currently people.ccmr.cornell.edu/ ̃kirkland,but may move as time goes on). I wish to thank Mick Thomas for preparing the specimen used to record the image in Fig.5.26 and to thank Stephen P. Meisburger for suggesting an interesting biological specimen to use in Fig.7.24. Again, I apologize in advance for leaving out some undoubtedlyoutstanding r- erences. I also apologize for the as yet undiscovered errors that remain in the text. Earl J. Kirkland, December 2009 Preface to First Edition Image simulation has become a common tool in HREM (High Resolution El- tron Microscopy) in recent years. However, the literature on the subject is scattered among many different journals and conference proceedings that have occurred in the last two or three decades. It is dif?cult for beginners to get started in this ?eld.
Computer Processing of Electron Microscope Images
Author: P. W. Hawkes
Publisher: Springer
ISBN: 9783642813832
Category : Science
Languages : en
Pages : 296
Book Description
Towards the end of the 1960s, a number of quite different circumstances combined to launch a period of intense activity in the digital processing of electron micro graphs. First, many years of work on correcting the resolution-limiting aberrations of electron microscope objectives had shown that these optical impediments to very high resolution could indeed be overcome, but only at the cost of immense exper imental difficulty; thanks largely to the theoretical work of K. -J. Hanszen and his colleagues and to the experimental work of F. Thon, the notions of transfer func tions were beginning to supplant or complement the concepts of geometrical optics in electron optical thinking; and finally, large fast computers, capable of manipu lating big image matrices in a reasonable time, were widely accessible. Thus the idea that recorded electron microscope images could be improved in some way or rendered more informative by subsequent computer processing gradually gained ground. At first, most effort was concentrated on three-dimensional reconstruction, particu larly of specimens with natural symmetry that could be exploited, and on linear operations on weakly scattering specimens (Chap. l). In 1973, however, R. W. Gerchberg and W. O. Saxton described an iterative algorithm that in principle yielded the phase and amplitude of the electron wave emerging from a strongly scattering speci men.
Publisher: Springer
ISBN: 9783642813832
Category : Science
Languages : en
Pages : 296
Book Description
Towards the end of the 1960s, a number of quite different circumstances combined to launch a period of intense activity in the digital processing of electron micro graphs. First, many years of work on correcting the resolution-limiting aberrations of electron microscope objectives had shown that these optical impediments to very high resolution could indeed be overcome, but only at the cost of immense exper imental difficulty; thanks largely to the theoretical work of K. -J. Hanszen and his colleagues and to the experimental work of F. Thon, the notions of transfer func tions were beginning to supplant or complement the concepts of geometrical optics in electron optical thinking; and finally, large fast computers, capable of manipu lating big image matrices in a reasonable time, were widely accessible. Thus the idea that recorded electron microscope images could be improved in some way or rendered more informative by subsequent computer processing gradually gained ground. At first, most effort was concentrated on three-dimensional reconstruction, particu larly of specimens with natural symmetry that could be exploited, and on linear operations on weakly scattering specimens (Chap. l). In 1973, however, R. W. Gerchberg and W. O. Saxton described an iterative algorithm that in principle yielded the phase and amplitude of the electron wave emerging from a strongly scattering speci men.
Advances in Imaging and Electron Physics
Author:
Publisher: Academic Press
ISBN: 0128209992
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
Computer Techniques for Image Processing in Electron Microscopy, Volume 214 in the Advances in Imaging and Electron Physics series, presents the latest advances in the field, with this new volume covering Image Formation Theory, The Discrete Fourier Transform, Analytic Images, The Image and Diffraction Plane Problem: Uniqueness, The Image and Diffraction Plane Problem: Numerical Methods, The Image and Diffraction Plane Problem: Computational Trials, Alternative Data for the Phase Determination, The Hardware of Digital Image Handling, Basic Software or Digital Image Handling, Improc, and much more.
Publisher: Academic Press
ISBN: 0128209992
Category : Technology & Engineering
Languages : en
Pages : 328
Book Description
Computer Techniques for Image Processing in Electron Microscopy, Volume 214 in the Advances in Imaging and Electron Physics series, presents the latest advances in the field, with this new volume covering Image Formation Theory, The Discrete Fourier Transform, Analytic Images, The Image and Diffraction Plane Problem: Uniqueness, The Image and Diffraction Plane Problem: Numerical Methods, The Image and Diffraction Plane Problem: Computational Trials, Alternative Data for the Phase Determination, The Hardware of Digital Image Handling, Basic Software or Digital Image Handling, Improc, and much more.
Electron Microscopy
Author: John J. Bozzola
Publisher: Jones & Bartlett Learning
ISBN: 9780763701925
Category : Medical
Languages : en
Pages : 702
Book Description
New edition of an introductory reference that covers all of the important aspects of electron microscopy from a biological perspective, including theory of scanning and transmission; specimen preparation; darkroom, digital imaging, and image analysis; laboratory safety; interpretation of images; and an atlas of ultrastructure. Generously illustrated with bandw line drawings and photographs. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: Jones & Bartlett Learning
ISBN: 9780763701925
Category : Medical
Languages : en
Pages : 702
Book Description
New edition of an introductory reference that covers all of the important aspects of electron microscopy from a biological perspective, including theory of scanning and transmission; specimen preparation; darkroom, digital imaging, and image analysis; laboratory safety; interpretation of images; and an atlas of ultrastructure. Generously illustrated with bandw line drawings and photographs. Annotation copyrighted by Book News, Inc., Portland, OR
Image and Signal Processing in Electron Microscopy
Author: P. W. Hawkes
Publisher:
ISBN:
Category : Electron microscopes
Languages : en
Pages : 416
Book Description
Publisher:
ISBN:
Category : Electron microscopes
Languages : en
Pages : 416
Book Description
Scanning Electron Microscopy and X-Ray Microanalysis
Author: Joseph Goldstein
Publisher: Springer Science & Business Media
ISBN: 1461332737
Category : Science
Languages : en
Pages : 679
Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.
Publisher: Springer Science & Business Media
ISBN: 1461332737
Category : Science
Languages : en
Pages : 679
Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.
Scanning Transmission Electron Microscopy
Author: Alina Bruma
Publisher: CRC Press
ISBN: 0429512732
Category : Computers
Languages : en
Pages : 164
Book Description
Scanning Transmission Electron Microscopy is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science–derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.
Publisher: CRC Press
ISBN: 0429512732
Category : Computers
Languages : en
Pages : 164
Book Description
Scanning Transmission Electron Microscopy is focused on discussing the latest approaches in the recording of high-fidelity quantitative annular dark-field (ADF) data. It showcases the application of machine learning in electron microscopy and the latest advancements in image processing and data interpretation for materials notoriously difficult to analyze using scanning transmission electron microscopy (STEM). It also highlights strategies to record and interpret large electron diffraction datasets for the analysis of nanostructures. This book: Discusses existing approaches for experimental design in the recording of high-fidelity quantitative ADF data Presents the most common types of scintillator-photomultiplier ADF detectors, along with their strengths and weaknesses. Proposes strategies to minimize the introduction of errors from these detectors and avenues for dealing with residual errors Discusses the practice of reliable multiframe imaging, along with the benefits and new experimental opportunities it presents in electron dose or dose-rate management Focuses on supervised and unsupervised machine learning for electron microscopy Discusses open data formats, community-driven software, and data repositories Proposes methods to process information at both global and local scales, and discusses avenues to improve the storage, transfer, analysis, and interpretation of multidimensional datasets Provides the spectrum of possibilities to study materials at the resolution limit by means of new developments in instrumentation Recommends methods for quantitative structural characterization of sensitive nanomaterials using electron diffraction techniques and describes strategies to collect electron diffraction patterns for such materials This book helps academics, researchers, and industry professionals in materials science, chemistry, physics, and related fields to understand and apply computer-science–derived analysis methods to solve problems regarding data analysis and interpretation of materials properties.
Electron Microscopy at Molecular Dimensions
Author: W. Baumeister
Publisher: Springer Science & Business Media
ISBN: 364267688X
Category : Science
Languages : en
Pages : 365
Book Description
If, ten years ago, one had been asked to comment on the prospects of peering into the fmest details of biomolecular organization, most electron microscopists would, I suppose at least, have been quite en thusiastic. When, during the early seventies, several groups were success ful in visualizing single heavy atoms, which undoubtedly was a techni cal triumph, this prompted the most sanguine expectations among bi ologists. In the following years, however, it began to transpire that radiation damage might impose limitations preventing us from taking full advantage of these exciting instrumental feasibilities. Fortunately, the radiation damage nightmare did no paralyze further activities, and it was in particular the work on the purple membrane which, brilliant ly exploiting the redundancy stratagem, revealed exhilarating new perspectives. Now, almost five years later, it seemed timely and appro priate to organize an international symposium to discuss and weight recent activities and current trends in "molecular microscopy". In planning this symposium, we selected topics according to our view of what is important or will deserve more attention in the near future. Taking into consideration suggestions made by the invited participants, some supplementary aspects were included; as a conse quence, the program developed somewhat beyond the scope as adum brated by the original title of this meeting (Regular 2-D Arrays of Biomacromolecules: Structure Determination and Assembly). As the meeting was organized, we had three morning sessions aimed at reflecting the "State ofthe Art".
Publisher: Springer Science & Business Media
ISBN: 364267688X
Category : Science
Languages : en
Pages : 365
Book Description
If, ten years ago, one had been asked to comment on the prospects of peering into the fmest details of biomolecular organization, most electron microscopists would, I suppose at least, have been quite en thusiastic. When, during the early seventies, several groups were success ful in visualizing single heavy atoms, which undoubtedly was a techni cal triumph, this prompted the most sanguine expectations among bi ologists. In the following years, however, it began to transpire that radiation damage might impose limitations preventing us from taking full advantage of these exciting instrumental feasibilities. Fortunately, the radiation damage nightmare did no paralyze further activities, and it was in particular the work on the purple membrane which, brilliant ly exploiting the redundancy stratagem, revealed exhilarating new perspectives. Now, almost five years later, it seemed timely and appro priate to organize an international symposium to discuss and weight recent activities and current trends in "molecular microscopy". In planning this symposium, we selected topics according to our view of what is important or will deserve more attention in the near future. Taking into consideration suggestions made by the invited participants, some supplementary aspects were included; as a conse quence, the program developed somewhat beyond the scope as adum brated by the original title of this meeting (Regular 2-D Arrays of Biomacromolecules: Structure Determination and Assembly). As the meeting was organized, we had three morning sessions aimed at reflecting the "State ofthe Art".
The Image Processing Handbook
Author: John C. Russ
Publisher: CRC Press
ISBN: 0203881095
Category : Medical
Languages : en
Pages : 836
Book Description
Now in its fifth edition, John C. Russ‘s monumental image processing reference is an even more complete, modern, and hands-on tool than ever before. The Image Processing Handbook, Fifth Edition is fully updated and expanded to reflect the latest developments in the field. Written by an expert with unequalled experience and authority, it offers clea
Publisher: CRC Press
ISBN: 0203881095
Category : Medical
Languages : en
Pages : 836
Book Description
Now in its fifth edition, John C. Russ‘s monumental image processing reference is an even more complete, modern, and hands-on tool than ever before. The Image Processing Handbook, Fifth Edition is fully updated and expanded to reflect the latest developments in the field. Written by an expert with unequalled experience and authority, it offers clea