Author: Martin Oliver Steinhauser
Publisher: Walter de Gruyter
ISBN: 3110256061
Category : Science
Languages : en
Pages : 532
Book Description
This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. Molecular dynamics computes a molecule's reactions and dynamics based on physical models; Monte Carlo uses random numbers to image a system's behaviour when there are different possible outcomes with related probabilities. The work conveys both the theoretical foundations as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.
Computer Simulation in Physics and Engineering
Author: Martin Oliver Steinhauser
Publisher: Walter de Gruyter
ISBN: 3110256061
Category : Science
Languages : en
Pages : 532
Book Description
This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. Molecular dynamics computes a molecule's reactions and dynamics based on physical models; Monte Carlo uses random numbers to image a system's behaviour when there are different possible outcomes with related probabilities. The work conveys both the theoretical foundations as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.
Publisher: Walter de Gruyter
ISBN: 3110256061
Category : Science
Languages : en
Pages : 532
Book Description
This work is a needed reference for widely used techniques and methods of computer simulation in physics and other disciplines, such as materials science. Molecular dynamics computes a molecule's reactions and dynamics based on physical models; Monte Carlo uses random numbers to image a system's behaviour when there are different possible outcomes with related probabilities. The work conveys both the theoretical foundations as well as applications and "tricks of the trade", that often are scattered across various papers. Thus it will meet a need and fill a gap for every scientist who needs computer simulations for his/her task at hand. In addition to being a reference, case studies and exercises for use as course reading are included.
Science in the Age of Computer Simulation
Author: Eric Winsberg
Publisher: University of Chicago Press
ISBN: 0226902048
Category : Computers
Languages : en
Pages : 166
Book Description
"Digital computer simulation helps study phenomena of great complexity, but how much do we know about the limits and possibilities of this new scientific practice? How do simulations compare to traditional experiments? And are they reliable? Scrutinizing these issues with a philosophical lens, Eric Winsberg explores the impact of simulation on such issues as the nature of scientific evidence, the role of values in science, the nature and role of fictions in science, and the relationship between simulation and experiment, theories and data, and theories at different levels of description"--Cover.
Publisher: University of Chicago Press
ISBN: 0226902048
Category : Computers
Languages : en
Pages : 166
Book Description
"Digital computer simulation helps study phenomena of great complexity, but how much do we know about the limits and possibilities of this new scientific practice? How do simulations compare to traditional experiments? And are they reliable? Scrutinizing these issues with a philosophical lens, Eric Winsberg explores the impact of simulation on such issues as the nature of scientific evidence, the role of values in science, the nature and role of fictions in science, and the relationship between simulation and experiment, theories and data, and theories at different levels of description"--Cover.
Computer Simulation Using Particles
Author: R.W Hockney
Publisher: CRC Press
ISBN: 9781439822050
Category : Science
Languages : en
Pages : 566
Book Description
Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.
Publisher: CRC Press
ISBN: 9781439822050
Category : Science
Languages : en
Pages : 566
Book Description
Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.
An Introduction to Computer Simulation Methods
Author: Harvey Gould
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 412
Book Description
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 412
Book Description
Computer Simulation of Dynamic Phenomena
Author: Mark L. Wilkins
Publisher: Springer Science & Business Media
ISBN: 3662038854
Category : Science
Languages : en
Pages : 260
Book Description
A description of computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. The text covers Maxwell's equations, and thermal and radiation diffusion, while the numerical procedures described permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.
Publisher: Springer Science & Business Media
ISBN: 3662038854
Category : Science
Languages : en
Pages : 260
Book Description
A description of computer programs for simulating phenomena in hydrodynamics, gas dynamics, and elastic plastic flow in one, two, and three dimensions. The text covers Maxwell's equations, and thermal and radiation diffusion, while the numerical procedures described permit the exact conservation of physical properties in the solutions of the fundamental laws of mechanics. The author also treats materials, including the use of simulation programs to predict material behavior.
Computer Simulation and Data Analysis in Molecular Biology and Biophysics
Author: Victor Bloomfield
Publisher: Springer Science & Business Media
ISBN: 1441900837
Category : Science
Languages : en
Pages : 325
Book Description
This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive.
Publisher: Springer Science & Business Media
ISBN: 1441900837
Category : Science
Languages : en
Pages : 325
Book Description
This book provides an introduction to two important aspects of modern bioch- istry, molecular biology, and biophysics: computer simulation and data analysis. My aim is to introduce the tools that will enable students to learn and use some f- damental methods to construct quantitative models of biological mechanisms, both deterministicandwithsomeelementsofrandomness;tolearnhowconceptsofpr- ability can help to understand important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data. The availability of very capable but inexpensive personal computers and software makes it possible to do such work at a much higher level, but in a much easier way, than ever before. TheExecutiveSummaryofthein?uential2003reportfromtheNationalAcademy of Sciences, “BIO 2010: Transforming Undergraduate Education for Future - search Biologists” [12], begins The interplay of the recombinant DNA, instrumentation, and digital revolutions has p- foundly transformed biological research. The con?uence of these three innovations has led to important discoveries, such as the mapping of the human genome. How biologists design, perform, and analyze experiments is changing swiftly. Biological concepts and models are becoming more quantitative, and biological research has become critically dependent on concepts and methods drawn from other scienti?c disciplines. The connections between the biological sciences and the physical sciences, mathematics, and computer science are rapidly becoming deeper and more extensive.
Introduction To Computer Simulations For Integrated Stem College Education
Author: Mohamed M Hafez
Publisher: World Scientific
ISBN: 9811209928
Category : Computers
Languages : en
Pages : 234
Book Description
This book is written to introduce computer simulations to undergraduate college students, freshmen to seniors, in STEM fields. The book starts with concepts from Basic Mathematics: Geometry, Algebra and Calculus, Properties of Elementary Functions (Polynomials, Exponential, Hyperbolic and Trigonometric Functions) are studied and simple differential equations representing these functions are derived. Numerical approximations of first and second order differential equations are studied in terms of finite differences on uniform grids. Computer solutions are obtained via recursive relations or solutions of simultaneous algebraic equations. Comparisons with the exact solutions (known a priori) allow the calculations of the error due to discretization. After the students build confidence in this approach, more problems where the solutions are not known a priori are tackled with applications in many fields. Next, the book gradually addresses linear differential equations with variable coefficients and nonlinear differential equations, including problems of bifurcation and chaos.Applications in Dynamics, Solid Mechanics, Fluid Mechanics, Heat Transfer, Chemical Reactions, and Combustion are included. Biographies of 50 pioneering mathematicians and scientists who contributed to the materials of the book are briefly sketched, to shed light on the history of these STEM fields.Finally, the main concepts discussed in the book, are summarized to make sure that the students do not miss any of them. Also, references for further readings are given for interested readers.
Publisher: World Scientific
ISBN: 9811209928
Category : Computers
Languages : en
Pages : 234
Book Description
This book is written to introduce computer simulations to undergraduate college students, freshmen to seniors, in STEM fields. The book starts with concepts from Basic Mathematics: Geometry, Algebra and Calculus, Properties of Elementary Functions (Polynomials, Exponential, Hyperbolic and Trigonometric Functions) are studied and simple differential equations representing these functions are derived. Numerical approximations of first and second order differential equations are studied in terms of finite differences on uniform grids. Computer solutions are obtained via recursive relations or solutions of simultaneous algebraic equations. Comparisons with the exact solutions (known a priori) allow the calculations of the error due to discretization. After the students build confidence in this approach, more problems where the solutions are not known a priori are tackled with applications in many fields. Next, the book gradually addresses linear differential equations with variable coefficients and nonlinear differential equations, including problems of bifurcation and chaos.Applications in Dynamics, Solid Mechanics, Fluid Mechanics, Heat Transfer, Chemical Reactions, and Combustion are included. Biographies of 50 pioneering mathematicians and scientists who contributed to the materials of the book are briefly sketched, to shed light on the history of these STEM fields.Finally, the main concepts discussed in the book, are summarized to make sure that the students do not miss any of them. Also, references for further readings are given for interested readers.
Understanding Molecular Simulation
Author: Daan Frenkel
Publisher: Elsevier
ISBN: 0080519989
Category : Science
Languages : en
Pages : 661
Book Description
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.
Publisher: Elsevier
ISBN: 0080519989
Category : Science
Languages : en
Pages : 661
Book Description
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.
Computational Physics
Author: Philipp Scherer
Publisher: Springer Science & Business Media
ISBN: 3319004018
Category : Science
Languages : en
Pages : 456
Book Description
This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. The first part of the book discusses the basic numerical methods. The second part concentrates on simulation of classical and quantum systems. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multi-step methods and the class of Verlet methods, which is introduced by studying the motion in Liouville space. A general chapter on the numerical treatment of differential equations provides methods of finite differences, finite volumes, finite elements and boundary elements together with spectral methods and weighted residual based methods. The book gives simple but non trivial examples from a broad range of physical topics trying to give the reader insight into not only the numerical treatment but also simulated problems. Different methods are compared with regard to their stability and efficiency. The exercises in the book are realised as computer experiments.
Publisher: Springer Science & Business Media
ISBN: 3319004018
Category : Science
Languages : en
Pages : 456
Book Description
This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. The first part of the book discusses the basic numerical methods. The second part concentrates on simulation of classical and quantum systems. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multi-step methods and the class of Verlet methods, which is introduced by studying the motion in Liouville space. A general chapter on the numerical treatment of differential equations provides methods of finite differences, finite volumes, finite elements and boundary elements together with spectral methods and weighted residual based methods. The book gives simple but non trivial examples from a broad range of physical topics trying to give the reader insight into not only the numerical treatment but also simulated problems. Different methods are compared with regard to their stability and efficiency. The exercises in the book are realised as computer experiments.
Computer Simulation and Computer Algebra
Author: Dietrich Stauffer
Publisher: Springer Science & Business Media
ISBN: 3642971741
Category : Computers
Languages : en
Pages : 148
Book Description
The chapter on statistical-physics simulations has been enlarged, mainly by a dis cussion of multispin coding techniques for the Ising model (bit-by-bit parallel oper ations). In the chapter about Reduce, some details of the presentation have been cor rected or clarified. The new operator MATEIGEN for the computation of eigenvec tors of matrices is explained. The first chapter and the appendix remain unchanged. Needless to say, the field of computational science is advancing so quickly, for ex ample with the development of parallel, as opposed to vectorized, algorithms, that it will not be too long before a further edition is called for. Cologne, March 1989 The authors Preface to the First Edition Computers play an increasingly important role in many of today's activities, and correspondingly physicists find employment after graduation in computer related jobs, often quite remote from their physics education. The present lectures, on the other hand, emphasize how we can use computers for the purposes of fundamental research in physics. Thus we do not deal with programs designed for newspapers, banks, or travel agencies, i.e., word processing and storage of large amounts of data.
Publisher: Springer Science & Business Media
ISBN: 3642971741
Category : Computers
Languages : en
Pages : 148
Book Description
The chapter on statistical-physics simulations has been enlarged, mainly by a dis cussion of multispin coding techniques for the Ising model (bit-by-bit parallel oper ations). In the chapter about Reduce, some details of the presentation have been cor rected or clarified. The new operator MATEIGEN for the computation of eigenvec tors of matrices is explained. The first chapter and the appendix remain unchanged. Needless to say, the field of computational science is advancing so quickly, for ex ample with the development of parallel, as opposed to vectorized, algorithms, that it will not be too long before a further edition is called for. Cologne, March 1989 The authors Preface to the First Edition Computers play an increasingly important role in many of today's activities, and correspondingly physicists find employment after graduation in computer related jobs, often quite remote from their physics education. The present lectures, on the other hand, emphasize how we can use computers for the purposes of fundamental research in physics. Thus we do not deal with programs designed for newspapers, banks, or travel agencies, i.e., word processing and storage of large amounts of data.