Author: Henry Levy
Publisher: Digital Press
ISBN: 1483299376
Category : Computers
Languages : en
Pages : 466
Book Description
Takes a unique systems approach to programming and architecture of the VAX Using the VAX as a detailed example, the first half of this book offers a complete course in assembly language programming. The second describes higher-level systems issues in computer architecture. Highlights include the VAX assembler and debugger, other modern architectures such as RISCs, multiprocessing and parallel computing, microprogramming, caches and translation buffers, and an appendix on the Berkeley UNIX assembler.
Computer Programming and Architecture
Author: Henry Levy
Publisher: Digital Press
ISBN: 1483299376
Category : Computers
Languages : en
Pages : 466
Book Description
Takes a unique systems approach to programming and architecture of the VAX Using the VAX as a detailed example, the first half of this book offers a complete course in assembly language programming. The second describes higher-level systems issues in computer architecture. Highlights include the VAX assembler and debugger, other modern architectures such as RISCs, multiprocessing and parallel computing, microprogramming, caches and translation buffers, and an appendix on the Berkeley UNIX assembler.
Publisher: Digital Press
ISBN: 1483299376
Category : Computers
Languages : en
Pages : 466
Book Description
Takes a unique systems approach to programming and architecture of the VAX Using the VAX as a detailed example, the first half of this book offers a complete course in assembly language programming. The second describes higher-level systems issues in computer architecture. Highlights include the VAX assembler and debugger, other modern architectures such as RISCs, multiprocessing and parallel computing, microprogramming, caches and translation buffers, and an appendix on the Berkeley UNIX assembler.
Scientific Programming and Computer Architecture
Author: Divakar Viswanath
Publisher: MIT Press
ISBN: 0262036290
Category : Computers
Languages : en
Pages : 625
Book Description
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
Publisher: MIT Press
ISBN: 0262036290
Category : Computers
Languages : en
Pages : 625
Book Description
A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.
A Practical Introduction to Computer Architecture
Author: Daniel Page
Publisher: Springer Science & Business Media
ISBN: 1848822553
Category : Computers
Languages : en
Pages : 648
Book Description
It is a great pleasure to write a preface to this book. In my view, the content is unique in that it blends traditional teaching approaches with the use of mathematics and a mainstream Hardware Design Language (HDL) as formalisms to describe key concepts. The book keeps the “machine” separate from the “application” by strictly following a bottom-up approach: it starts with transistors and logic gates and only introduces assembly language programs once their execution by a processor is clearly de ned. Using a HDL, Verilog in this case, rather than static circuit diagrams is a big deviation from traditional books on computer architecture. Static circuit diagrams cannot be explored in a hands-on way like the corresponding Verilog model can. In order to understand why I consider this shift so important, one must consider how computer architecture, a subject that has been studied for more than 50 years, has evolved. In the pioneering days computers were constructed by hand. An entire computer could (just about) be described by drawing a circuit diagram. Initially, such d- grams consisted mostly of analogue components before later moving toward d- ital logic gates. The advent of digital electronics led to more complex cells, such as half-adders, ip- ops, and decoders being recognised as useful building blocks.
Publisher: Springer Science & Business Media
ISBN: 1848822553
Category : Computers
Languages : en
Pages : 648
Book Description
It is a great pleasure to write a preface to this book. In my view, the content is unique in that it blends traditional teaching approaches with the use of mathematics and a mainstream Hardware Design Language (HDL) as formalisms to describe key concepts. The book keeps the “machine” separate from the “application” by strictly following a bottom-up approach: it starts with transistors and logic gates and only introduces assembly language programs once their execution by a processor is clearly de ned. Using a HDL, Verilog in this case, rather than static circuit diagrams is a big deviation from traditional books on computer architecture. Static circuit diagrams cannot be explored in a hands-on way like the corresponding Verilog model can. In order to understand why I consider this shift so important, one must consider how computer architecture, a subject that has been studied for more than 50 years, has evolved. In the pioneering days computers were constructed by hand. An entire computer could (just about) be described by drawing a circuit diagram. Initially, such d- grams consisted mostly of analogue components before later moving toward d- ital logic gates. The advent of digital electronics led to more complex cells, such as half-adders, ip- ops, and decoders being recognised as useful building blocks.
Programming.Architecture
Author: Paul Coates
Publisher: Routledge
ISBN: 1136899049
Category : Architecture
Languages : en
Pages : 378
Book Description
Programming.Architecture is a simple and concise introduction to the history of computing and computational design, explaining the basics of algorithmic thinking and the use of the computer as a tool for design and architecture. Paul Coates, a pioneer of CAAD, demonstrates algorithmic thinking through projects and student work collated through his years of teaching students of computing and design. The book takes a detailed and practical look at what the techniques and philosophy of coding entail, and gives the reader many "glimpses under the hood" in the form of code snippets and examples of algorithms. This is essential reading for student and professional architects and designers interested in how the development of computers has influenced the way we think about, and design for, the built environment.
Publisher: Routledge
ISBN: 1136899049
Category : Architecture
Languages : en
Pages : 378
Book Description
Programming.Architecture is a simple and concise introduction to the history of computing and computational design, explaining the basics of algorithmic thinking and the use of the computer as a tool for design and architecture. Paul Coates, a pioneer of CAAD, demonstrates algorithmic thinking through projects and student work collated through his years of teaching students of computing and design. The book takes a detailed and practical look at what the techniques and philosophy of coding entail, and gives the reader many "glimpses under the hood" in the form of code snippets and examples of algorithms. This is essential reading for student and professional architects and designers interested in how the development of computers has influenced the way we think about, and design for, the built environment.
Computer Architecture and VAX Assembly Language Programming
Author: James E. Brink
Publisher: Benjamin-Cummings Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 608
Book Description
Detailed coverage of architecture/hardware topics such as CPU, microprocessors, large computer architecture and fault tolerance architecture makes this a valuable reference. For computer science and electrical engineering professionals as well as VAX assembly language programmers.
Publisher: Benjamin-Cummings Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 608
Book Description
Detailed coverage of architecture/hardware topics such as CPU, microprocessors, large computer architecture and fault tolerance architecture makes this a valuable reference. For computer science and electrical engineering professionals as well as VAX assembly language programmers.
Assembly Programming and Computer Architecture
Author: Brian R. Hall
Publisher:
ISBN: 9781943153329
Category : Computers
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781943153329
Category : Computers
Languages : en
Pages : 0
Book Description
Computer Architecture for Scientists
Author: Andrew A. Chien
Publisher: Cambridge University Press
ISBN: 1009008382
Category : Computers
Languages : en
Pages : 266
Book Description
The dramatic increase in computer performance has been extraordinary, but not for all computations: it has key limits and structure. Software architects, developers, and even data scientists need to understand how exploit the fundamental structure of computer performance to harness it for future applications. Ideal for upper level undergraduates, Computer Architecture for Scientists covers four key pillars of computer performance and imparts a high-level basis for reasoning with and understanding these concepts: Small is fast – how size scaling drives performance; Implicit parallelism – how a sequential program can be executed faster with parallelism; Dynamic locality – skirting physical limits, by arranging data in a smaller space; Parallelism – increasing performance with teams of workers. These principles and models provide approachable high-level insights and quantitative modelling without distracting low-level detail. Finally, the text covers the GPU and machine-learning accelerators that have become increasingly important for mainstream applications.
Publisher: Cambridge University Press
ISBN: 1009008382
Category : Computers
Languages : en
Pages : 266
Book Description
The dramatic increase in computer performance has been extraordinary, but not for all computations: it has key limits and structure. Software architects, developers, and even data scientists need to understand how exploit the fundamental structure of computer performance to harness it for future applications. Ideal for upper level undergraduates, Computer Architecture for Scientists covers four key pillars of computer performance and imparts a high-level basis for reasoning with and understanding these concepts: Small is fast – how size scaling drives performance; Implicit parallelism – how a sequential program can be executed faster with parallelism; Dynamic locality – skirting physical limits, by arranging data in a smaller space; Parallelism – increasing performance with teams of workers. These principles and models provide approachable high-level insights and quantitative modelling without distracting low-level detail. Finally, the text covers the GPU and machine-learning accelerators that have become increasingly important for mainstream applications.
Principles of Secure Processor Architecture Design
Author: Jakub Szefer
Publisher: Springer Nature
ISBN: 3031017609
Category : Technology & Engineering
Languages : en
Pages : 154
Book Description
With growing interest in computer security and the protection of the code and data which execute on commodity computers, the amount of hardware security features in today's processors has increased significantly over the recent years. No longer of just academic interest, security features inside processors have been embraced by industry as well, with a number of commercial secure processor architectures available today. This book aims to give readers insights into the principles behind the design of academic and commercial secure processor architectures. Secure processor architecture research is concerned with exploring and designing hardware features inside computer processors, features which can help protect confidentiality and integrity of the code and data executing on the processor. Unlike traditional processor architecture research that focuses on performance, efficiency, and energy as the first-order design objectives, secure processor architecture design has security as the first-order design objective (while still keeping the others as important design aspects that need to be considered). This book aims to present the different challenges of secure processor architecture design to graduate students interested in research on architecture and hardware security and computer architects working in industry interested in adding security features to their designs. It aims to educate readers about how the different challenges have been solved in the past and what are the best practices, i.e., the principles, for design of new secure processor architectures. Based on the careful review of past work by many computer architects and security researchers, readers also will come to know the five basic principles needed for secure processor architecture design. The book also presents existing research challenges and potential new research directions. Finally, this book presents numerous design suggestions, as well as discusses pitfalls and fallacies that designers should avoid.
Publisher: Springer Nature
ISBN: 3031017609
Category : Technology & Engineering
Languages : en
Pages : 154
Book Description
With growing interest in computer security and the protection of the code and data which execute on commodity computers, the amount of hardware security features in today's processors has increased significantly over the recent years. No longer of just academic interest, security features inside processors have been embraced by industry as well, with a number of commercial secure processor architectures available today. This book aims to give readers insights into the principles behind the design of academic and commercial secure processor architectures. Secure processor architecture research is concerned with exploring and designing hardware features inside computer processors, features which can help protect confidentiality and integrity of the code and data executing on the processor. Unlike traditional processor architecture research that focuses on performance, efficiency, and energy as the first-order design objectives, secure processor architecture design has security as the first-order design objective (while still keeping the others as important design aspects that need to be considered). This book aims to present the different challenges of secure processor architecture design to graduate students interested in research on architecture and hardware security and computer architects working in industry interested in adding security features to their designs. It aims to educate readers about how the different challenges have been solved in the past and what are the best practices, i.e., the principles, for design of new secure processor architectures. Based on the careful review of past work by many computer architects and security researchers, readers also will come to know the five basic principles needed for secure processor architecture design. The book also presents existing research challenges and potential new research directions. Finally, this book presents numerous design suggestions, as well as discusses pitfalls and fallacies that designers should avoid.
Computer Architecture
Author: John L. Hennessy
Publisher: Elsevier
ISBN: 012383872X
Category : Computers
Languages : en
Pages : 858
Book Description
The computing world is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation. This book focuses on the shift, exploring the ways in which software and technology in the 'cloud' are accessed by cell phones, tablets, laptops, and more
Publisher: Elsevier
ISBN: 012383872X
Category : Computers
Languages : en
Pages : 858
Book Description
The computing world is in the middle of a revolution: mobile clients and cloud computing have emerged as the dominant paradigms driving programming and hardware innovation. This book focuses on the shift, exploring the ways in which software and technology in the 'cloud' are accessed by cell phones, tablets, laptops, and more
Essentials of Computer Architecture, Second Edition
Author: Douglas Comer
Publisher: CRC Press
ISBN: 1351849603
Category : Computers
Languages : en
Pages : 544
Book Description
This easy to read textbook provides an introduction to computer architecture, while focusing on the essential aspects of hardware that programmers need to know. The topics are explained from a programmer’s point of view, and the text emphasizes consequences for programmers. Divided in five parts, the book covers the basics of digital logic, gates, and data paths, as well as the three primary aspects of architecture: processors, memories, and I/O systems. The book also covers advanced topics of parallelism, pipelining, power and energy, and performance. A hands-on lab is also included. The second edition contains three new chapters as well as changes and updates throughout.
Publisher: CRC Press
ISBN: 1351849603
Category : Computers
Languages : en
Pages : 544
Book Description
This easy to read textbook provides an introduction to computer architecture, while focusing on the essential aspects of hardware that programmers need to know. The topics are explained from a programmer’s point of view, and the text emphasizes consequences for programmers. Divided in five parts, the book covers the basics of digital logic, gates, and data paths, as well as the three primary aspects of architecture: processors, memories, and I/O systems. The book also covers advanced topics of parallelism, pipelining, power and energy, and performance. A hands-on lab is also included. The second edition contains three new chapters as well as changes and updates throughout.