Computational Methods for Kinetic Models of Magnetically Confined Plasmas

Computational Methods for Kinetic Models of Magnetically Confined Plasmas PDF Author: J. Killeen
Publisher: Springer Science & Business Media
ISBN: 3642859542
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy compo nent fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field.

Computational Methods for Kinetic Models of Magnetically Confined Plasmas

Computational Methods for Kinetic Models of Magnetically Confined Plasmas PDF Author: J. Killeen
Publisher: Springer Science & Business Media
ISBN: 3642859542
Category : Science
Languages : en
Pages : 208

Get Book Here

Book Description
Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy compo nent fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 910

Get Book Here

Book Description


Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 518

Get Book Here

Book Description


ERDA Energy Research Abstracts

ERDA Energy Research Abstracts PDF Author: United States. Energy Research and Development Administration
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 800

Get Book Here

Book Description


Fusion Energy Update

Fusion Energy Update PDF Author:
Publisher:
ISBN:
Category : Controlled fusion
Languages : en
Pages : 160

Get Book Here

Book Description


Government Reports Announcements & Index

Government Reports Announcements & Index PDF Author:
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 1168

Get Book Here

Book Description


Nuclear Science Abstracts

Nuclear Science Abstracts PDF Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 724

Get Book Here

Book Description


100 Volumes of 'Notes on Numerical Fluid Mechanics'

100 Volumes of 'Notes on Numerical Fluid Mechanics' PDF Author: Ernst Heinrich Hirschel
Publisher: Springer Science & Business Media
ISBN: 3540708057
Category : Technology & Engineering
Languages : en
Pages : 507

Get Book Here

Book Description
In a book that will be required reading for engineers, physicists, and computer scientists, the editors have collated a number of articles on fluid mechanics, written by some of the world’s leading researchers and practitioners in this important subject area.

An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program

An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309183197
Category : Science
Languages : en
Pages : 112

Get Book Here

Book Description
The purpose of this assessment of the fusion energy sciences program of the Department of Energy's (DOE's) Office of Science is to evaluate the quality of the research program and to provide guidance for the future program strategy aimed at strengthening the research component of the program. The committee focused its review of the fusion program on magnetic confinement, or magnetic fusion energy (MFE), and touched only briefly on inertial fusion energy (IFE), because MFE-relevant research accounts for roughly 95 percent of the funding in the Office of Science's fusion program. Unless otherwise noted, all references to fusion in this report should be assumed to refer to magnetic fusion. Fusion research carried out in the United States under the sponsorship of the Office of Fusion Energy Sciences (OFES) has made remarkable strides over the years and recently passed several important milestones. For example, weakly burning plasmas with temperatures greatly exceeding those on the surface of the Sun have been created and diagnosed. Significant progress has been made in understanding and controlling instabilities and turbulence in plasma fusion experiments, thereby facilitating improved plasma confinement-remotely controlling turbulence in a 100-million-degree medium is a premier scientific achievement by any measure. Theory and modeling are now able to provide useful insights into instabilities and to guide experiments. Experiments and associated diagnostics are now able to extract enough information about the processes occurring in high-temperature plasmas to guide further developments in theory and modeling. Many of the major experimental and theoretical tools that have been developed are now converging to produce a qualitative change in the program's approach to scientific discovery. The U.S. program has traditionally been an important source of innovation and discovery for the international fusion energy effort. The goal of understanding at a fundamental level the physical processes governing observed plasma behavior has been a distinguishing feature of the program.

ERDA Energy Research Abstracts

ERDA Energy Research Abstracts PDF Author: United States. Energy Research and Development Administration. Technical Information Center
Publisher:
ISBN:
Category : Force and energy
Languages : en
Pages : 982

Get Book Here

Book Description