Author: Nathaniel Dean
Publisher: American Mathematical Soc.
ISBN: 9780821870617
Category : Mathematics
Languages : en
Pages : 416
Book Description
With recent technological advances in workstations, graphics, graphical user interfaces, and object oriented programming languages, a significant number of researchers are developing general-purpose software and integrated software systems for domains in discrete mathematics, including graph theory, combinatorics, combinatorial optimization, and sets. This software aims to provide effective computational tools for research, applications prototyping, and teaching. In March 1992, DIMACS sponsored a workshop on Computational Support for Discrete Mathematics in order to facilitate interactions between the researchers, developers, and educators who work in these areas. Containing refereed papers based on talks presented at the workshop, this volume documents current and past research in these areas and should provide impetus for new interactions.
Computational Support for Discrete Mathematics
Author: Nathaniel Dean
Publisher: American Mathematical Soc.
ISBN: 9780821870617
Category : Mathematics
Languages : en
Pages : 416
Book Description
With recent technological advances in workstations, graphics, graphical user interfaces, and object oriented programming languages, a significant number of researchers are developing general-purpose software and integrated software systems for domains in discrete mathematics, including graph theory, combinatorics, combinatorial optimization, and sets. This software aims to provide effective computational tools for research, applications prototyping, and teaching. In March 1992, DIMACS sponsored a workshop on Computational Support for Discrete Mathematics in order to facilitate interactions between the researchers, developers, and educators who work in these areas. Containing refereed papers based on talks presented at the workshop, this volume documents current and past research in these areas and should provide impetus for new interactions.
Publisher: American Mathematical Soc.
ISBN: 9780821870617
Category : Mathematics
Languages : en
Pages : 416
Book Description
With recent technological advances in workstations, graphics, graphical user interfaces, and object oriented programming languages, a significant number of researchers are developing general-purpose software and integrated software systems for domains in discrete mathematics, including graph theory, combinatorics, combinatorial optimization, and sets. This software aims to provide effective computational tools for research, applications prototyping, and teaching. In March 1992, DIMACS sponsored a workshop on Computational Support for Discrete Mathematics in order to facilitate interactions between the researchers, developers, and educators who work in these areas. Containing refereed papers based on talks presented at the workshop, this volume documents current and past research in these areas and should provide impetus for new interactions.
Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781534970748
Category :
Languages : en
Pages : 342
Book Description
This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Computational Discrete Mathematics
Author: Sriram Pemmaraju
Publisher: Cambridge University Press
ISBN: 1107268710
Category : Computers
Languages : en
Pages : 615
Book Description
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Publisher: Cambridge University Press
ISBN: 1107268710
Category : Computers
Languages : en
Pages : 615
Book Description
This book was first published in 2003. Combinatorica, an extension to the popular computer algebra system Mathematica®, is the most comprehensive software available for teaching and research applications of discrete mathematics, particularly combinatorics and graph theory. This book is the definitive reference/user's guide to Combinatorica, with examples of all 450 Combinatorica functions in action, along with the associated mathematical and algorithmic theory. The authors cover classical and advanced topics on the most important combinatorial objects: permutations, subsets, partitions, and Young tableaux, as well as all important areas of graph theory: graph construction operations, invariants, embeddings, and algorithmic graph theory. In addition to being a research tool, Combinatorica makes discrete mathematics accessible in new and exciting ways to a wide variety of people, by encouraging computational experimentation and visualization. The book contains no formal proofs, but enough discussion to understand and appreciate all the algorithms and theorems it contains.
Discrete Mathematics Using a Computer
Author: John O'Donnell
Publisher: Springer Science & Business Media
ISBN: 1846285984
Category : Computers
Languages : en
Pages : 446
Book Description
Computer science abounds with applications of discrete mathematics, yet s- dents of computer science often study discrete mathematics in the context of purely mathematical applications. They have to ?gure out for themselves how to apply the ideas of discrete mathematics to computing problems. It is not easy. Most students fail to experience broad success in this enterprise, which is not surprising, since many of the most important advances in science and engineeringhavebeen, precisely, applicationsofmathematicstospeci?cscience and engineering problems. Tobesure,mostdiscretemathtextbooksincorporatesomeaspectsapplying discrete math to computing, but it usually takes the form of asking students to write programs to compute the number of three-ball combinations there are in a set of ten balls or, at best, to implement a graph algorithm. Few texts ask students to use mathematical logic to analyze properties of digital circuits or computer programs or to apply the set theoretic model of functions to understand higher-order operations. A major aim of this text is to integrate, tightly, the study of discrete mathematics with the study of central problems of computer science.
Publisher: Springer Science & Business Media
ISBN: 1846285984
Category : Computers
Languages : en
Pages : 446
Book Description
Computer science abounds with applications of discrete mathematics, yet s- dents of computer science often study discrete mathematics in the context of purely mathematical applications. They have to ?gure out for themselves how to apply the ideas of discrete mathematics to computing problems. It is not easy. Most students fail to experience broad success in this enterprise, which is not surprising, since many of the most important advances in science and engineeringhavebeen, precisely, applicationsofmathematicstospeci?cscience and engineering problems. Tobesure,mostdiscretemathtextbooksincorporatesomeaspectsapplying discrete math to computing, but it usually takes the form of asking students to write programs to compute the number of three-ball combinations there are in a set of ten balls or, at best, to implement a graph algorithm. Few texts ask students to use mathematical logic to analyze properties of digital circuits or computer programs or to apply the set theoretic model of functions to understand higher-order operations. A major aim of this text is to integrate, tightly, the study of discrete mathematics with the study of central problems of computer science.
Discrete Computational Structures
Author: Robert R. Korfhage
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 408
Book Description
Basic forms and operations; Undirected graphs; Gorn trees; Directed graphs; Formal and natural languages; Finite groups and computing; Partial orders and lattices; Boolean algebras; The propositional calculus; Combinatorics; Systems of distinct representatives; Discrete probability.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 408
Book Description
Basic forms and operations; Undirected graphs; Gorn trees; Directed graphs; Formal and natural languages; Finite groups and computing; Partial orders and lattices; Boolean algebras; The propositional calculus; Combinatorics; Systems of distinct representatives; Discrete probability.
Discrete Mathematics for Computer Science
Author: David Liben-Nowell
Publisher: Wiley
ISBN: 9781118065532
Category : Mathematics
Languages : en
Pages : 0
Book Description
Written exclusively with computer science students in mind, Discrete Mathematics for Computer Science provides a comprehensive treatment of standard course topics for the introductory discrete mathematics course with a strong emphasis on the relationship between the concepts and their application to computer science. The book has been crafted to enhance teaching and learning ease and includes a wide selection of exercises, detailed exploration problems, examples and problems inspired by wide-ranging applications of computer science and handy quick reference guides for key technical topics throughout. Discrete Mathematics for Computer Science provides a lucidly written introduction to discrete mathematics with abundant support for learning, including over 450 examples, thorough chapter summaries, simple quizzes, and approximately 1600 homework exercises of widely varying difficulty. Each chapter begins with motivational content that relates the chapter topic to computer science practice and the book also includes over fifty "Computer Science Connections" which discuss applications to computer science such as Rotation Matrices; Game Trees, Logic, and Winning Tic-Tac(-Toe); Moore's Law; Secret Sharing; The Enigma Machine and the First Computer; Bayesian Modeling and Spam Filtering; and Quantum Computing.
Publisher: Wiley
ISBN: 9781118065532
Category : Mathematics
Languages : en
Pages : 0
Book Description
Written exclusively with computer science students in mind, Discrete Mathematics for Computer Science provides a comprehensive treatment of standard course topics for the introductory discrete mathematics course with a strong emphasis on the relationship between the concepts and their application to computer science. The book has been crafted to enhance teaching and learning ease and includes a wide selection of exercises, detailed exploration problems, examples and problems inspired by wide-ranging applications of computer science and handy quick reference guides for key technical topics throughout. Discrete Mathematics for Computer Science provides a lucidly written introduction to discrete mathematics with abundant support for learning, including over 450 examples, thorough chapter summaries, simple quizzes, and approximately 1600 homework exercises of widely varying difficulty. Each chapter begins with motivational content that relates the chapter topic to computer science practice and the book also includes over fifty "Computer Science Connections" which discuss applications to computer science such as Rotation Matrices; Game Trees, Logic, and Winning Tic-Tac(-Toe); Moore's Law; Secret Sharing; The Enigma Machine and the First Computer; Bayesian Modeling and Spam Filtering; and Quantum Computing.
Discrete Mathematics for Computer Scientists
Author: Clifford Stein
Publisher:
ISBN: 9780131377103
Category : Computer science
Languages : en
Pages : 525
Book Description
Stein/Drysdale/Bogart's Discrete Mathematics for Computer Scientists is ideal for computer science students taking the discrete math course. Written specifically for computer science students, this unique textbook directly addresses their needs by providing a foundation in discrete math while using motivating, relevant CS applications. This text takes an active-learning approach where activities are presented as exercises and the material is then fleshed out through explanations and extensions of the exercises.
Publisher:
ISBN: 9780131377103
Category : Computer science
Languages : en
Pages : 525
Book Description
Stein/Drysdale/Bogart's Discrete Mathematics for Computer Scientists is ideal for computer science students taking the discrete math course. Written specifically for computer science students, this unique textbook directly addresses their needs by providing a foundation in discrete math while using motivating, relevant CS applications. This text takes an active-learning approach where activities are presented as exercises and the material is then fleshed out through explanations and extensions of the exercises.
Practical Discrete Mathematics
Author: Ryan T. White
Publisher: Packt Publishing Ltd
ISBN: 1838983503
Category : Mathematics
Languages : en
Pages : 330
Book Description
A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book.
Publisher: Packt Publishing Ltd
ISBN: 1838983503
Category : Mathematics
Languages : en
Pages : 330
Book Description
A practical guide simplifying discrete math for curious minds and demonstrating its application in solving problems related to software development, computer algorithms, and data science Key FeaturesApply the math of countable objects to practical problems in computer scienceExplore modern Python libraries such as scikit-learn, NumPy, and SciPy for performing mathematicsLearn complex statistical and mathematical concepts with the help of hands-on examples and expert guidanceBook Description Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks. Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level. As you learn the language of discrete mathematics, you'll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you'll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science. By the end of this book, you'll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning. What you will learnUnderstand the terminology and methods in discrete math and their usage in algorithms and data problemsUse Boolean algebra in formal logic and elementary control structuresImplement combinatorics to measure computational complexity and manage memory allocationUse random variables, calculate descriptive statistics, and find average-case computational complexitySolve graph problems involved in routing, pathfinding, and graph searches, such as depth-first searchPerform ML tasks such as data visualization, regression, and dimensionality reductionWho this book is for This book is for computer scientists looking to expand their knowledge of discrete math, the core topic of their field. University students looking to get hands-on with computer science, mathematics, statistics, engineering, or related disciplines will also find this book useful. Basic Python programming skills and knowledge of elementary real-number algebra are required to get started with this book.
Introductory Discrete Mathematics
Author: V. K . Balakrishnan
Publisher: Courier Corporation
ISBN: 0486140385
Category : Mathematics
Languages : en
Pages : 260
Book Description
This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition.
Publisher: Courier Corporation
ISBN: 0486140385
Category : Mathematics
Languages : en
Pages : 260
Book Description
This concise, undergraduate-level text focuses on combinatorics, graph theory with applications to some standard network optimization problems, and algorithms. More than 200 exercises, many with complete solutions. 1991 edition.
Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography