Computational Quantum Mechanics

Computational Quantum Mechanics PDF Author: Joshua Izaac
Publisher: Springer
ISBN: 3319999303
Category : Science
Languages : en
Pages : 494

Get Book Here

Book Description
Quantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required – an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schrödinger equation for arbitrarily complex potentials, and for single and multi-electron systems.

Computational Quantum Mechanics

Computational Quantum Mechanics PDF Author: Joshua Izaac
Publisher: Springer
ISBN: 3319999303
Category : Science
Languages : en
Pages : 494

Get Book Here

Book Description
Quantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required – an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schrödinger equation for arbitrarily complex potentials, and for single and multi-electron systems.

New Methods in Computational Quantum Mechanics

New Methods in Computational Quantum Mechanics PDF Author: Ilya Prigogine
Publisher: John Wiley & Sons
ISBN: 0470142057
Category : Science
Languages : en
Pages : 812

Get Book Here

Book Description
The use of quantum chemistry for the quantitative prediction of molecular properties has long been frustrated by the technical difficulty of carrying out the needed computations. In the last decade there have been substantial advances in the formalism and computer hardware needed to carry out accurate calculations of molecular properties efficiently. These advances have been sufficient to make quantum chemical calculations a reliable tool for the quantitative interpretation of chemical phenomena and a guide to laboratory experiments. However, the success of these recent developments in computational quantum chemistry is not well known outside the community of practitioners. In order to make the larger community of chemical physicists aware of the current state of the subject, this self-contained volume of Advances in Chemical Physics surveys a number of the recent accomplishments in computational quantum chemistry. This stand-alone work presents the cutting edge of research in computational quantum mechanics. Supplemented with more than 150 illustrations, it provides evaluations of a broad range of methods, including: * Quantum Monte Carlo methods in chemistry * Monte Carlo methods for real-time path integration * The Redfield equation in condensed-phase quantum dynamics * Path-integral centroid methods in quantum statistical mechanics and dynamics * Multiconfigurational perturbation theory-applications in electronic spectroscopy * Electronic structure calculations for molecules containing transition metals * And more Contributors to New Methods in Computational Quantum Mechanics KERSTIN ANDERSSON, Department of Theoretical Chemistry, Chemical Center, Sweden DAVID M. CEPERLEY, National Center for Supercomputing Applications and Department of Physics, University of Illinois at Urbana-Champaign, Illinois MICHAEL A. COLLINS, Research School of Chemistry, Australian National University, Canberra, Australia REINHOLD EGGER, Fakultät für Physik, Universität Freiburg, Freiburg, Germany ANTHONY K. FELTS, Department of Chemistry, Columbia University, New York RICHARD A. FRIESNER, Department of Chemistry, Columbia University, New York MARKUS P. FÜLSCHER, Department of Theoretical Chemistry, Chemical Center, Sweden K. M. HO, Ames Laboratory and Department of Physics, Iowa State University, Ames, Iowa C. H. MAK, Department of Chemistry, University of Southern California, Los Angeles, California PER-ÅKE Malmqvist, Department of Theoretical Chemistry, Chemical Center, Sweden MANUELA MERCHán, Departamento de Química Física, Universitat de Valéncia, Spain LUBOS MITAS, National Center for Supercomputing Applications and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Illinois STEFANO OSS, Dipartimento di Fisica, Università di Trento and Istituto Nazionale di Fisica della Materia, Unità di Trento, Italy KRISTINE PIERLOOT, Department of Chemistry, University of Leuven, Belgium W. THOMAS POLLARD, Department of Chemistry, Columbia University, New York BJÖRN O. ROOS, Department of Theoretical Chemistry, Chemical Center, Sweden LUIS SERRANO-ANDRÉS, Department of Theoretical Chemistry, Chemical Center, Sweden PER E. M. SIEGBAHN, Department of Physics, University of Stockholm, Stockholm, Sweden WALTER THIEL, Institut für Organische Chemie, Universität Zürich, Zürich, Switzerland GREGORY A. VOTH, Department of Chemistry, University of Pennsylvania, Pennsylvania C. Z. Wang, Ames Laboratory and Department of Physi

Computational Quantum Mechanics for Materials Engineers

Computational Quantum Mechanics for Materials Engineers PDF Author: Levente Vitos
Publisher: Springer Science & Business Media
ISBN: 1846289513
Category : Technology & Engineering
Languages : en
Pages : 237

Get Book Here

Book Description
This is the only book to cover the most recent developments in applied quantum theory and their use in modeling materials properties. It describes new approaches to modeling disordered alloys and focuses on those approaches that combine the most efficient quantum-level theories of random alloys with the most sophisticated numerical techniques. In doing so, it establishes a theoretical insight into the electronic structure of complex materials such as stainless steels, Hume-Rothery alloys and silicates.

Handbook of Computational Quantum Chemistry

Handbook of Computational Quantum Chemistry PDF Author: David B. Cook
Publisher: Courier Corporation
ISBN: 0486443078
Category : Science
Languages : en
Pages : 852

Get Book Here

Book Description
This comprehensive text provides upper-level undergraduates and graduate students with an accessible introduction to the implementation of quantum ideas in molecular modeling, exploring practical applications alongside theoretical explanations. Topics include the Hartree-Fock method; matrix SCF equations; implementation of the closed-shell case; introduction to molecular integrals; and much more. 1998 edition.

Computational Physics

Computational Physics PDF Author: Philipp Scherer
Publisher: Springer Science & Business Media
ISBN: 3319004018
Category : Science
Languages : en
Pages : 456

Get Book Here

Book Description
This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. The first part of the book discusses the basic numerical methods. The second part concentrates on simulation of classical and quantum systems. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multi-step methods and the class of Verlet methods, which is introduced by studying the motion in Liouville space. A general chapter on the numerical treatment of differential equations provides methods of finite differences, finite volumes, finite elements and boundary elements together with spectral methods and weighted residual based methods. The book gives simple but non trivial examples from a broad range of physical topics trying to give the reader insight into not only the numerical treatment but also simulated problems. Different methods are compared with regard to their stability and efficiency. The exercises in the book are realised as computer experiments.

Computational Chemistry

Computational Chemistry PDF Author: Errol G. Lewars
Publisher: Springer Science & Business Media
ISBN: 0306483912
Category : Science
Languages : en
Pages : 474

Get Book Here

Book Description
Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.

Quantum Computation and Quantum Information

Quantum Computation and Quantum Information PDF Author: Michael A. Nielsen
Publisher: Cambridge University Press
ISBN: 1139495488
Category : Science
Languages : en
Pages : 709

Get Book Here

Book Description
One of the most cited books in physics of all time, Quantum Computation and Quantum Information remains the best textbook in this exciting field of science. This 10th anniversary edition includes an introduction from the authors setting the work in context. This comprehensive textbook describes such remarkable effects as fast quantum algorithms, quantum teleportation, quantum cryptography and quantum error-correction. Quantum mechanics and computer science are introduced before moving on to describe what a quantum computer is, how it can be used to solve problems faster than 'classical' computers and its real-world implementation. It concludes with an in-depth treatment of quantum information. Containing a wealth of figures and exercises, this well-known textbook is ideal for courses on the subject, and will interest beginning graduate students and researchers in physics, computer science, mathematics, and electrical engineering.

Numerical Recipes in Quantum Information Theory and Quantum Computing

Numerical Recipes in Quantum Information Theory and Quantum Computing PDF Author: M.S. Ramkarthik
Publisher: CRC Press
ISBN: 1000423794
Category : Science
Languages : en
Pages : 424

Get Book Here

Book Description
This first of a kind textbook provides computational tools in Fortran 90 that are fundamental to quantum information, quantum computing, linear algebra and one dimensional spin half condensed matter systems. Over 160 subroutines are included, and the numerical recipes are aided by detailed flowcharts. Suitable for beginner and advanced readers alike, students and researchers will find this textbook to be a helpful guide and a compendium. Key Features: Includes 160 subroutines all of which can be used either as a standalone program or integrated with any other main program without any issues. Every parameter in the input, output and execution has been provided while keeping both beginner and advanced users in mind. The output of every program is explained thoroughly with detailed examples. A detailed dependency chart is provided for every recipe.

Computational Quantum Chemistry

Computational Quantum Chemistry PDF Author: Ram Yatan Prasad
Publisher: CRC Press
ISBN: 100034469X
Category : Science
Languages : en
Pages : 715

Get Book Here

Book Description
Computational Quantum Chemistry, Second Edition, is an extremely useful tool for teaching and research alike. It stipulates information in an accessible manner for scientific investigators, researchers and entrepreneurs. The book supplies an overview of the field and explains the fundamental underlying principles. It also gives the knowledge of numerous comparisons of different methods. The book consists of a wider range of applications in each chapter. It also provides a number of references which will be useful for academic and industrial researchers. It includes a large number of worked-out examples and unsolved problems for enhancing the computational skill of the users. Features Includes comprehensive coverage of most essential basic concepts Achieves greater clarity with improved planning of topics and is reader-friendly Deals with the mathematical techniques which will help readers to more efficient problem solving Explains a structured approach for mathematical derivations A reference book for academicians and scientific investigators Ram Yatan Prasad, PhD, DSc (India), DSc (hc) Colombo, is a Professor of Chemistry and former Vice Chancellor of S.K.M University, Jharkhand, India. Pranita, PhD, DSc (hc) Sri Lanka, FICS, is an Assistant Professor of Chemistry at Vinoba Bhave University, India.

Computational Quantum Mechanics

Computational Quantum Mechanics PDF Author: Joshua Izaac
Publisher:
ISBN: 9783319999319
Category : Quantum theory
Languages : en
Pages : 494

Get Book Here

Book Description
Quantum mechanics undergraduate courses mostly focus on systems with known analytical solutions; the finite well, simple Harmonic, and spherical potentials. However, most problems in quantum mechanics cannot be solved analytically. This textbook introduces the numerical techniques required to tackle problems in quantum mechanics, providing numerous examples en route. No programming knowledge is required? an introduction to both Fortran and Python is included, with code examples throughout. With a hands-on approach, numerical techniques covered in this book include differentiation and integration, ordinary and differential equations, linear algebra, and the Fourier transform. By completion of this book, the reader will be armed to solve the Schrödinger equation for arbitrarily complex potentials, and for single and multi-electron systems.