Computational Optimization, Methods and Algorithms

Computational Optimization, Methods and Algorithms PDF Author: Slawomir Koziel
Publisher: Springer
ISBN: 3642208592
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.

Computational Optimization, Methods and Algorithms

Computational Optimization, Methods and Algorithms PDF Author: Slawomir Koziel
Publisher: Springer
ISBN: 3642208592
Category : Technology & Engineering
Languages : en
Pages : 292

Get Book Here

Book Description
Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry. This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry.

Feasibility and Infeasibility in Optimization:

Feasibility and Infeasibility in Optimization: PDF Author: John W. Chinneck
Publisher: Springer Science & Business Media
ISBN: 0387749322
Category : Mathematics
Languages : en
Pages : 283

Get Book Here

Book Description
Written by a world leader in the field and aimed at researchers in applied and engineering sciences, this brilliant text has as its main goal imparting an understanding of the methods so that practitioners can make immediate use of existing algorithms and software, and so that researchers can extend the state of the art and find new applications. It includes algorithms on seeking feasibility and analyzing infeasibility, as well as describing new and surprising applications.

Computational Methods in Optimization

Computational Methods in Optimization PDF Author: E. Polak
Publisher: Academic Press
ISBN: 008096091X
Category : Business & Economics
Languages : en
Pages : 351

Get Book Here

Book Description
Computational Methods in Optimization

Computational Methods for Optimizing Manufacturing Technology: Models and Techniques

Computational Methods for Optimizing Manufacturing Technology: Models and Techniques PDF Author: Davim, J. Paulo
Publisher: IGI Global
ISBN: 1466601299
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
"This book contains the latest research developments in manufacturing technology and its optimization, and demonstrates the fundamentals of new computational approaches and the range of their potential application"--Provided by publisher.

Computational Methods and Production Engineering

Computational Methods and Production Engineering PDF Author: J. Paulo Davim
Publisher: Woodhead Publishing
ISBN: 0857094823
Category : Business & Economics
Languages : en
Pages : 244

Get Book Here

Book Description
Computational Methods and Production Engineering: Research and Development is an original book publishing refereed, high quality articles with a special emphasis on research and development in production engineering and production organization for modern industry. Innovation and the relationship between computational methods and production engineering are presented. Contents include: Finite Element method (FEM) modeling/simulation; Artificial neural networks (ANNs); Genetic algorithms; Evolutionary computation; Fuzzy logic; neuro-fuzzy systems; Particle swarm optimization (PSO); Tabu search and simulation annealing; and optimization techniques for complex systems. As computational methods currently have several applications, including modeling manufacturing processes, monitoring and control, parameters optimization and computer-aided process planning, this book is an ideal resource for practitioners. - Presents cutting-edge computational methods for production engineering - Explores the relationship between applied computational methods and production engineering - Presents new innovations in the field - Edited by a key researcher in the field

State of the Art in Global Optimization

State of the Art in Global Optimization PDF Author: Christodoulos A. Floudas
Publisher: Springer Science & Business Media
ISBN: 1461334373
Category : Mathematics
Languages : en
Pages : 638

Get Book Here

Book Description
Optimization problems abound in most fields of science, engineering, and tech nology. In many of these problems it is necessary to compute the global optimum (or a good approximation) of a multivariable function. The variables that define the function to be optimized can be continuous and/or discrete and, in addition, many times satisfy certain constraints. Global optimization problems belong to the complexity class of NP-hard prob lems. Such problems are very difficult to solve. Traditional descent optimization algorithms based on local information are not adequate for solving these problems. In most cases of practical interest the number of local optima increases, on the aver age, exponentially with the size of the problem (number of variables). Furthermore, most of the traditional approaches fail to escape from a local optimum in order to continue the search for the global solution. Global optimization has received a lot of attention in the past ten years, due to the success of new algorithms for solving large classes of problems from diverse areas such as engineering design and control, computational chemistry and biology, structural optimization, computer science, operations research, and economics. This book contains refereed invited papers presented at the conference on "State of the Art in Global Optimization: Computational Methods and Applications" held at Princeton University, April 28-30, 1995. The conference presented current re search on global optimization and related applications in science and engineering. The papers included in this book cover a wide spectrum of approaches for solving global optimization problems and applications.

Numerical Optimization with Computational Errors

Numerical Optimization with Computational Errors PDF Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3319309218
Category : Mathematics
Languages : en
Pages : 308

Get Book Here

Book Description
This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.

First-Order Methods in Optimization

First-Order Methods in Optimization PDF Author: Amir Beck
Publisher: SIAM
ISBN: 1611974984
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
The primary goal of this book is to provide a self-contained, comprehensive study of the main ?rst-order methods that are frequently used in solving large-scale problems. First-order methods exploit information on values and gradients/subgradients (but not Hessians) of the functions composing the model under consideration. With the increase in the number of applications that can be modeled as large or even huge-scale optimization problems, there has been a revived interest in using simple methods that require low iteration cost as well as low memory storage. The author has gathered, reorganized, and synthesized (in a unified manner) many results that are currently scattered throughout the literature, many of which cannot be typically found in optimization books. First-Order Methods in Optimization offers comprehensive study of first-order methods with the theoretical foundations; provides plentiful examples and illustrations; emphasizes rates of convergence and complexity analysis of the main first-order methods used to solve large-scale problems; and covers both variables and functional decomposition methods.

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems PDF Author: Curtis R. Vogel
Publisher: SIAM
ISBN: 0898717574
Category : Mathematics
Languages : en
Pages : 195

Get Book Here

Book Description
Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Computational Methods in Decision-Making, Economics and Finance

Computational Methods in Decision-Making, Economics and Finance PDF Author: Erricos John Kontoghiorghes
Publisher: Springer Science & Business Media
ISBN: 9781402008399
Category : Business & Economics
Languages : en
Pages : 656

Get Book Here

Book Description
Computing has become essential for the modeling, analysis, and optimization of systems. This book is devoted to algorithms, computational analysis, and decision models. The chapters are organized in two parts: optimization models of decisions and models of pricing and equilibria. Optimization is at the core of rational decision making. Even when the decision maker has more than one goal or there is significant uncertainty in the system, optimization provides a rational framework for efficient decisions. The Markowitz mean-variance formulation is a classical example. The first part of the book is on recent developments in optimization decision models for finance and economics. The first four chapters of this part focus directly on multi-stage problems in finance. Chapters 5-8 involve the use of worst-case robust analysis. Chapters 9-11 are devoted to portfolio optimization. The final four chapters are on transportation-inventory with stochastic demand; optimal investment with CRRA utility; hedging financial contracts; and, automatic differentiation for computational finance. The uncertainty associated with prediction and modeling constantly requires the development of improved methods and models. Similarly, as systems strive towards equilibria, the characterization and computation of equilibria assists analysis and prediction. The second part of the book is devoted to recent research in computational tools and models of equilibria, prediction, and pricing. The first three chapters of this part consider hedging issues in finance. Chapters 19-22 consider prediction and modeling methodologies. Chapters 23-26 focus on auctions and equilibria. Volatility models are investigated in chapters 27-28. The final two chapters investigate risk assessment and product pricing. Audience: Researchers working in computational issues related to economics, finance, and management science.