Computational Methods in Multiphase Flow V

Computational Methods in Multiphase Flow V PDF Author: Andrea Alberto Mammoli
Publisher: WIT Press
ISBN: 1845641884
Category : Science
Languages : en
Pages : 545

Get Book Here

Book Description
Together with turbulence, multiphase flow remains one of the most challenging areas of computational mechanics and experimental methods and numerous problems remain unsolved to date. Multiphase flows are found in all areas of technology, at all length scales and flow regimes. The fluids involved can be compressible or incompressible, linear or nonlinear. Because of the complexity of the problems, it is often essential to utilize advanced computational and experimental methods to solve the complex equations that describe them. Challenges in these simulations include modelling and tracking interfaces, dealing with multiple length scales, modelling nonlinear fluids, treating drop breakup and coalescence, characterizing phase structures, and many others. Experimental techniques, although expensive and difficult to perform, are essential to validate models. This book contains papers presented at the Fifth International Conference on Computational Methods in Multiphase Flow, which are grouped into the following topics: Multiphase Flow Simulation; Interaction of Gas, Liquids and Solids; Turbulent Flow; Environmental Multiphase Flow; Bubble and Drop Dynamics; Flow in Porous Media; Heat Transfer; Image Processing; Interfacial Behaviour.

Computational Methods in Multiphase Flow V

Computational Methods in Multiphase Flow V PDF Author: Andrea Alberto Mammoli
Publisher: WIT Press
ISBN: 1845641884
Category : Science
Languages : en
Pages : 545

Get Book Here

Book Description
Together with turbulence, multiphase flow remains one of the most challenging areas of computational mechanics and experimental methods and numerous problems remain unsolved to date. Multiphase flows are found in all areas of technology, at all length scales and flow regimes. The fluids involved can be compressible or incompressible, linear or nonlinear. Because of the complexity of the problems, it is often essential to utilize advanced computational and experimental methods to solve the complex equations that describe them. Challenges in these simulations include modelling and tracking interfaces, dealing with multiple length scales, modelling nonlinear fluids, treating drop breakup and coalescence, characterizing phase structures, and many others. Experimental techniques, although expensive and difficult to perform, are essential to validate models. This book contains papers presented at the Fifth International Conference on Computational Methods in Multiphase Flow, which are grouped into the following topics: Multiphase Flow Simulation; Interaction of Gas, Liquids and Solids; Turbulent Flow; Environmental Multiphase Flow; Bubble and Drop Dynamics; Flow in Porous Media; Heat Transfer; Image Processing; Interfacial Behaviour.

Computational Methods for Multiphase Flow

Computational Methods for Multiphase Flow PDF Author: Andrea Prosperetti
Publisher: Cambridge University Press
ISBN: 1139459902
Category : Mathematics
Languages : en
Pages : 392

Get Book Here

Book Description
Thanks to high-speed computers and advanced algorithms, the important field of modelling multiphase flows is an area of rapid growth. This one-stop account – now in paperback, with corrections from the first printing – is the ideal way to get to grips with this topic, which has significant applications in industry and nature. Each chapter is written by an acknowledged expert and includes extensive references to current research. All of the chapters are essentially independent and so the book can be used for a range of advanced courses and the self-study of specific topics. No other book covers so many topics related to multiphase flow, and it will therefore be warmly welcomed by researchers and graduate students of the subject across engineering, physics, and applied mathematics.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media PDF Author: Zhangxin Chen
Publisher: SIAM
ISBN: 0898716063
Category : Computers
Languages : en
Pages : 551

Get Book Here

Book Description
This book offers a fundamental and practical introduction to the use of computational methods. A thorough discussion of practical aspects of the subject is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Each chapter ends with bibliographic information and exercises.

Computational Methods in Multiphase Flow VII

Computational Methods in Multiphase Flow VII PDF Author: C. A. Brebbia
Publisher: WIT Press
ISBN: 1845647343
Category : Science
Languages : en
Pages : 557

Get Book Here

Book Description
Multiphase flows are found in all areas of technology, at all length scales and flow regimes and can involve compressible or incompressible linear or nonlinear, fluids. However, although they are ubiquitous, multiphase flows continue to be one of the most challenging areas of computational mechanics, with numerous problems as yet unsolved. Advanced computational and experimental methods are often required to solve the equations that describe such complex problems. The many challenges that must be faced in solving them include modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterising phase structures, and treating drop break-up and coalescence. It is important to validate models, which calls for the use of expensive and difficult experimental techniques.This book presents contributions on the latest research in the techniques for solving multiphase flow problems, presented at the seventh in a biennial series of conferences on the subject that began in 2001. Featured topics include: Flow in porous media; Turbulent flow; Multiphase flow simulation; Image processing; Heat transfer; Atomization; Interface behaviour; Oil and gas applications; Experimental measurements; Energy applications; Biological flows; Micro and macro fluids; Compressible flows.

Computational Methods in Multiphase Flow VI

Computational Methods in Multiphase Flow VI PDF Author: Andrea Alberto Mammoli
Publisher: WIT Press
ISBN: 1845645189
Category : Science
Languages : en
Pages : 345

Get Book Here

Book Description
Multiphase flows, which can involve compressible or incompressible linear or nonlinear, fluids, Are found in all areas of technology, at all length scales and flow regimes. In spite of their ubiquitousness, however multiphase flow continues to be one of the most challenging areas of computational mechanics and experimental methods, with numerous problems remaining unsolved to date. Because the multiphase flow problems are so complex, advanced computational and experimental methods are often required to solve the equations that describe them. The many hhallenges include modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterizing phase structures, and treating drop breakup and coalescence. Models must be validated, which requires the use of expensive and difficult experimental techniquess. This book presents contributions on the latest research in these techniques, presented at the sixth in a biennial series of conferences on the subject that begain in 2001. Featured topics include: Bubble and drop dynamics, Flow in porous media, Turbulent flow, Multiphase flow simulation, Image processing, Heat transfer, Interaction of gases, liquids and solids, Interface behaviour, Small scale phenomena, Atomization processes, and Liquid film behaviour.

Computational Methods in Multiphase Flow VIII

Computational Methods in Multiphase Flow VIII PDF Author: P. Vorobieff
Publisher: WIT Press
ISBN: 184564946X
Category : Science
Languages : en
Pages : 549

Get Book Here

Book Description
This book presents the latest research in one of the most challenging, yet most universally applicable areas of technology. Multiphase flows are found in all areas of technology, at all length scales and flow regimes, involving compressible or incompressible linear or nonlinear fluids. The range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. The solution of the equations that describe such complex problems often requires a combination of advanced computational and experimental methods. For example, any models developed must be validated through the application of expensive and difficult experimental techniques. Numerous problems in the area thus remain as yet unsolved, including modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterising phase structures, and treating drop break-up and coalescence. The papers contained in the book were presented at the eighth in a well established series of biennial conferences that began in 2001. They represent close interaction between numerical modellers and other researchers working to gradually resolve the many outstanding issues in understanding of multiphase flow. The papers in the book cover such topics as: Multiphase Flow Simulation; Bubble and Drop Dynamics; Interface Behaviour; Experimental Measurements; Energy Applications; Compressible Flows; Flow in Porous Media; Turbulent Flow; Image Processing; Heat Transfer; Atomization; Hydromagnetics; Plasma; Fluidised Beds; Cavitation.

Computational Methods for Multiphase Flows in Porous Media

Computational Methods for Multiphase Flows in Porous Media PDF Author: Zhangxin Chen
Publisher: SIAM
ISBN: 9780898718942
Category : Finite element method
Languages : en
Pages : 556

Get Book Here

Book Description
Computational Methods for Multiphase Flows in Porous Media offers a fundamental and practical introduction to the use of computational methods, particularly finite element methods, in the simulation of fluid flows in porous media. It is the first book to cover a wide variety of flows, including single-phase, two-phase, black oil, volatile, compositional, nonisothermal, and chemical compositional flows in both ordinary porous and fractured porous media. In addition, a range of computational methods are used, and benchmark problems of nine comparative solution projects organized by the Society of Petroleum Engineers are presented for the first time in book form. The book reviews multiphase flow equations and computational methods to introduce basic terminologies and notation. A thorough discussion of practical aspects of the subjects is presented in a consistent manner, and the level of treatment is rigorous without being unnecessarily abstract. Audience: this book can be used as a textbook for graduate or advanced undergraduate students in geology, petroleum engineering, and applied mathematics; as a reference book for professionals in these fields, as well as scientists working in the area of petroleum reservoir simulation; as a handbook for employees in the oil industry who need a basic understanding of modeling and computational method concepts; and by researchers in hydrology, environmental remediation, and some areas of biological tissue modeling. Calculus, physics, and some acquaintance with partial differential equations and simple matrix algebra are necessary prerequisites.

Computational Methods in Multiphase Flow IV

Computational Methods in Multiphase Flow IV PDF Author: A.A. Mammoli
Publisher: WIT Press
ISBN: 1845640799
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
Fluid Dynamics is one of the most important topics of applied mathematics and physics. Together with complex flows and turbulence, multiphase flows remains one of the most challenging areas of computational mechanics, and even seemingly simple problems remain unsolved to date. Multiphase flows are found in all areas of technology, at all length scales and flow regimes. The fluids involved can be compressible or incompressible, linear or nonlinear. Because of the complexity of the problem, it is often essential to utilize advanced computational and experimental methods to solve the complex equations that describe them. Challenges in these simulations include nonlinear fluids, treating drop breakup and coalescence, characterizing phase structures, and many others.This volume brings together work presented at the Fourth International Conference on Computational and Experimental Methods in Multiphase and Complex Flows. Featured topics include: Suspensions; Bubble and Drop Dynamics; Flow in Porous Media; Interfaces; Turbulent Flow; Injectors and Nozzles; Particle Image Velocimetry; Macroscale Constitutive Models; Large Eddy Simulation; Finite Volumes; Interface Tracking Methods; Biological Flows; Environmental Multiphase Flow; Phase Changes and Stochastic Modelling.

Computational Methods in Multiphase Flow III

Computational Methods in Multiphase Flow III PDF Author: Andrea Alberto Mammoli
Publisher: WIT Press
ISBN: 1845640306
Category : Science
Languages : en
Pages : 385

Get Book Here

Book Description
A common feature of multiphase flows is that a dispersed or discontinuous phase is being carried by a continuous phase, for example water drops in gas flow, solid particles in water flow, or gas bubbles in liquid flow. The overall behavior of the flow is shaped largely by the interaction between the discontinuous elements--drops, particles, bubbles

Direct Numerical Simulations of Gas–Liquid Multiphase Flows

Direct Numerical Simulations of Gas–Liquid Multiphase Flows PDF Author: Grétar Tryggvason
Publisher: Cambridge University Press
ISBN: 1139496700
Category : Computers
Languages : en
Pages : 337

Get Book Here

Book Description
Accurately predicting the behaviour of multiphase flows is a problem of immense industrial and scientific interest. Modern computers can now study the dynamics in great detail and these simulations yield unprecedented insight. This book provides a comprehensive introduction to direct numerical simulations of multiphase flows for researchers and graduate students. After a brief overview of the context and history the authors review the governing equations. A particular emphasis is placed on the 'one-fluid' formulation where a single set of equations is used to describe the entire flow field and interface terms are included as singularity distributions. Several applications are discussed, showing how direct numerical simulations have helped researchers advance both our understanding and our ability to make predictions. The final chapter gives an overview of recent studies of flows with relatively complex physics, such as mass transfer and chemical reactions, solidification and boiling, and includes extensive references to current work.