Computational Methods for the Discovery and Analysis of Genes and Other Functional DNA Sequences

Computational Methods for the Discovery and Analysis of Genes and Other Functional DNA Sequences PDF Author: Cyriac Kandoth
Publisher:
ISBN:
Category : DNA
Languages : en
Pages : 126

Get Book Here

Book Description
"The need for automating genome analysis is a result of the tremendous amount of genomic data. As of today, a high-throughput DNA sequencing machine can run millions of sequencing reactions in parallel, and it is becoming faster and cheaper to sequence the entire genome of an organism. Public databases containing genomic data are growing exponentially, and hence the rise in demand for intuitive automated methods of DNA analysis and subsequent gene identification. However, the complexity of gene organization makes automation a challenging task, and smart algorithm design and parallelization are necessary to perform accurate analyses in reasonable amounts of time. This work describes two such automated methods for the identification of novel genes within given DNA sequences. The first method utilizes negative selection patterns as an evolutionary rationale for the identification of additional members of a gene family. As input it requires a known protein coding gene in that family. The second method is a massively parallel data mining algorithm that searches a whole genome for inverted repeats (palindromic sequences) and identifies potential precursors of non-coding RNA genes. Both methods were validated successfully on the fully sequenced and well studied plant species, Arabidopsis thaliana"--Abstract, leaf iv.

Computational Methods for the Discovery and Analysis of Genes and Other Functional DNA Sequences

Computational Methods for the Discovery and Analysis of Genes and Other Functional DNA Sequences PDF Author: Cyriac Kandoth
Publisher:
ISBN:
Category : DNA
Languages : en
Pages : 126

Get Book Here

Book Description
"The need for automating genome analysis is a result of the tremendous amount of genomic data. As of today, a high-throughput DNA sequencing machine can run millions of sequencing reactions in parallel, and it is becoming faster and cheaper to sequence the entire genome of an organism. Public databases containing genomic data are growing exponentially, and hence the rise in demand for intuitive automated methods of DNA analysis and subsequent gene identification. However, the complexity of gene organization makes automation a challenging task, and smart algorithm design and parallelization are necessary to perform accurate analyses in reasonable amounts of time. This work describes two such automated methods for the identification of novel genes within given DNA sequences. The first method utilizes negative selection patterns as an evolutionary rationale for the identification of additional members of a gene family. As input it requires a known protein coding gene in that family. The second method is a massively parallel data mining algorithm that searches a whole genome for inverted repeats (palindromic sequences) and identifies potential precursors of non-coding RNA genes. Both methods were validated successfully on the fully sequenced and well studied plant species, Arabidopsis thaliana"--Abstract, leaf iv.

Sequence — Evolution — Function

Sequence — Evolution — Function PDF Author: Eugene V. Koonin
Publisher: Springer Science & Business Media
ISBN: 1475737831
Category : Science
Languages : en
Pages : 482

Get Book Here

Book Description
Sequence - Evolution - Function is an introduction to the computational approaches that play a critical role in the emerging new branch of biology known as functional genomics. The book provides the reader with an understanding of the principles and approaches of functional genomics and of the potential and limitations of computational and experimental approaches to genome analysis. Sequence - Evolution - Function should help bridge the "digital divide" between biologists and computer scientists, allowing biologists to better grasp the peculiarities of the emerging field of Genome Biology and to learn how to benefit from the enormous amount of sequence data available in the public databases. The book is non-technical with respect to the computer methods for genome analysis and discusses these methods from the user's viewpoint, without addressing mathematical and algorithmic details. Prior practical familiarity with the basic methods for sequence analysis is a major advantage, but a reader without such experience will be able to use the book as an introduction to these methods. This book is perfect for introductory level courses in computational methods for comparative and functional genomics.

Computational Methods for Next Generation Sequencing Data Analysis

Computational Methods for Next Generation Sequencing Data Analysis PDF Author: Ion Mandoiu
Publisher: John Wiley & Sons
ISBN: 1119272165
Category : Computers
Languages : en
Pages : 464

Get Book Here

Book Description
Introduces readers to core algorithmic techniques for next-generation sequencing (NGS) data analysis and discusses a wide range of computational techniques and applications This book provides an in-depth survey of some of the recent developments in NGS and discusses mathematical and computational challenges in various application areas of NGS technologies. The 18 chapters featured in this book have been authored by bioinformatics experts and represent the latest work in leading labs actively contributing to the fast-growing field of NGS. The book is divided into four parts: Part I focuses on computing and experimental infrastructure for NGS analysis, including chapters on cloud computing, modular pipelines for metabolic pathway reconstruction, pooling strategies for massive viral sequencing, and high-fidelity sequencing protocols. Part II concentrates on analysis of DNA sequencing data, covering the classic scaffolding problem, detection of genomic variants, including insertions and deletions, and analysis of DNA methylation sequencing data. Part III is devoted to analysis of RNA-seq data. This part discusses algorithms and compares software tools for transcriptome assembly along with methods for detection of alternative splicing and tools for transcriptome quantification and differential expression analysis. Part IV explores computational tools for NGS applications in microbiomics, including a discussion on error correction of NGS reads from viral populations, methods for viral quasispecies reconstruction, and a survey of state-of-the-art methods and future trends in microbiome analysis. Computational Methods for Next Generation Sequencing Data Analysis: Reviews computational techniques such as new combinatorial optimization methods, data structures, high performance computing, machine learning, and inference algorithms Discusses the mathematical and computational challenges in NGS technologies Covers NGS error correction, de novo genome transcriptome assembly, variant detection from NGS reads, and more This text is a reference for biomedical professionals interested in expanding their knowledge of computational techniques for NGS data analysis. The book is also useful for graduate and post-graduate students in bioinformatics.

Computational Methods for the Analysis of Genomic Data and Biological Processes

Computational Methods for the Analysis of Genomic Data and Biological Processes PDF Author: Francisco A. Gómez Vela
Publisher: MDPI
ISBN: 3039437712
Category : Medical
Languages : en
Pages : 222

Get Book Here

Book Description
In recent decades, new technologies have made remarkable progress in helping to understand biological systems. Rapid advances in genomic profiling techniques such as microarrays or high-performance sequencing have brought new opportunities and challenges in the fields of computational biology and bioinformatics. Such genetic sequencing techniques allow large amounts of data to be produced, whose analysis and cross-integration could provide a complete view of organisms. As a result, it is necessary to develop new techniques and algorithms that carry out an analysis of these data with reliability and efficiency. This Special Issue collected the latest advances in the field of computational methods for the analysis of gene expression data, and, in particular, the modeling of biological processes. Here we present eleven works selected to be published in this Special Issue due to their interest, quality, and originality.

Bioinformatics

Bioinformatics PDF Author: Andreas D. Baxevanis
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 396

Get Book Here

Book Description
"A reference that should be in the personal library of any biologist who uses the Internet for the analysis of DNA and protein sequence data" --Science

Computational Methods in Genome Research

Computational Methods in Genome Research PDF Author: Sándor Suhai
Publisher: Springer Science & Business Media
ISBN: 1461524512
Category : Science
Languages : en
Pages : 230

Get Book Here

Book Description
The application of computational methods to solve scientific and pratical problems in genome research created a new interdisciplinary area that transcends boundaries traditionally separating genetics, biology, mathematics, physics, and computer science. Computers have been, of course, intensively used for many year~ in the field of life sciences, even before genome research started, to store and analyze DNA or proteins sequences, to explore and model the three-dimensional structure, the dynamics and the function of biopolymers, to compute genetic linkage or evolutionary processes etc. The rapid development of new molecular and genetic technologies, combined with ambitious goals to explore the structure and function of genomes of higher organisms, has generated, however, not only a huge and burgeoning body of data but also a new class of scientific questions. The nature and complexity of these questions will require, beyond establishing a new kind of alliance between experimental and theoretical disciplines, also the development of new generations both in computer software and hardware technologies, respectively. New theoretical procedures, combined with powerful computational facilities, will substantially extend the horizon of problems that genome research can ·attack with success. Many of us still feel that computational models rationalizing experimental findings in genome research fulfil their promises more slowly than desired. There also is an uncertainity concerning the real position of a 'theoretical genome research' in the network of established disciplines integrating their efforts in this field.

Theoretical and Computational Methods in Genome Research

Theoretical and Computational Methods in Genome Research PDF Author: Sándor Suhai
Publisher: Springer Science & Business Media
ISBN:
Category : Medical
Languages : en
Pages : 352

Get Book Here

Book Description
Contains plenary lectures presented at the March 1996 International Symposium on Theoretical and Computational Genome Research, held in Heidelberg, Germany. Topics include the feasibility of whole human genome sequencing, analysis of gene functions by the metabolic pathway database, error analysis o

High Performance Computational Methods for Biological Sequence Analysis

High Performance Computational Methods for Biological Sequence Analysis PDF Author: Tieng K. Yap
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 240

Get Book Here

Book Description
High Performance Computational Methods for Biological Sequence Analysis presents biological sequence analysis using an interdisciplinary approach that integrates biological, mathematical and computational concepts. These concepts are presented so that computer scientists and biomedical scientists can obtain the necessary background for developing better algorithms and applying parallel computational methods. This book will enable both groups to develop the depth of knowledge needed to work in this interdisciplinary field. This work focuses on high performance computational approaches that are used to perform computationally intensive biological sequence analysis tasks: pairwise sequence comparison, multiple sequence alignment, and sequence similarity searching in large databases. These computational methods are becoming increasingly important to the molecular biology community allowing researchers to explore the increasingly large amounts of sequence data generated by the Human Genome Project and other related biological projects. The approaches presented by the authors are state-of-the-art and show how to reduce analysis times significantly, sometimes from days to minutes. High Performance Computational Methods for Biological Sequence Analysis is tremendously important to biomedical science students and researchers who are interested in applying sequence analyses to their studies, and to computational science students and researchers who are interested in applying new computational approaches to biological sequence analyses.

Biological Sequence Analysis

Biological Sequence Analysis PDF Author: Richard Durbin
Publisher: Cambridge University Press
ISBN: 113945739X
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
Probabilistic models are becoming increasingly important in analysing the huge amount of data being produced by large-scale DNA-sequencing efforts such as the Human Genome Project. For example, hidden Markov models are used for analysing biological sequences, linguistic-grammar-based probabilistic models for identifying RNA secondary structure, and probabilistic evolutionary models for inferring phylogenies of sequences from different organisms. This book gives a unified, up-to-date and self-contained account, with a Bayesian slant, of such methods, and more generally to probabilistic methods of sequence analysis. Written by an interdisciplinary team of authors, it aims to be accessible to molecular biologists, computer scientists, and mathematicians with no formal knowledge of the other fields, and at the same time present the state-of-the-art in this new and highly important field.

Bioinformatics

Bioinformatics PDF Author: David Edwards
Publisher: Springer Science & Business Media
ISBN: 0387927387
Category : Science
Languages : en
Pages : 450

Get Book Here

Book Description
Bioinformatics is a relatively new field of research. It evolved from the requirement to process, characterize, and apply the information being produced by DNA sequencing technology. The production of DNA sequence data continues to grow exponentially. At the same time, improved bioinformatics such as faster DNA sequence search methods have been combined with increasingly powerful computer systems to process this information. Methods are being developed for the ever more detailed quantification of gene expression, providing an insight into the function of the newly discovered genes, while molecular genetic tools provide a link between these genes and heritable traits. Genetic tests are now available to determine the likelihood of suffering specific ailments and can predict how plant cultivars may respond to the environment. The steps in the translation of the genetic blueprint to the observed phenotype is being increasingly understood through proteome, metabolome and phenome analysis, all underpinned by advances in bioinformatics. Bioinformatics is becoming increasingly central to the study of biology, and a day at a computer can often save a year or more in the laboratory. The volume is intended for graduate-level biology students as well as researchers who wish to gain a better understanding of applied bioinformatics and who wish to use bioinformatics technologies to assist in their research. The volume would also be of value to bioinformatics developers, particularly those from a computing background, who would like to understand the application of computational tools for biological research. Each chapter would include a comprehensive introduction giving an overview of the fundamentals, aimed at introducing graduate students and researchers from diverse backgrounds to the field and bring them up-to-date on the current state of knowledge. To accommodate the broad range of topics in applied bioinformatics, chapters have been grouped into themes: gene and genome analysis, molecular genetic analysis, gene expression analysis, protein and proteome analysis, metabolome analysis, phenome data analysis, literature mining and bioinformatics tool development. Each chapter and theme provides an introduction to the biology behind the data describes the requirements for data processing and details some of the methods applied to the data to enhance biological understanding.