Author: M. Predeleanu
Publisher: Elsevier
ISBN: 1483298493
Category : Computers
Languages : en
Pages : 375
Book Description
The papers in this book deal with computational methods for predicting material processing defects. Using recent advances in finite strain plasticity and viscoplasticity, damage modelling, bifurcation and instability theory, fracture mechanics and computer numerical techniques, new approaches to mechanical defect analysis are proposed. Appropriate methods for explaining and avoiding the defects leading to fracture, high porosity, strain localization or undesirable geometrical imperfections are presented. In addition, some papers are devoted to new formulations and new calculation algorithms to be used for solving the forming problems. Finally, two papers deal with physical description of defects occurring in forming and cutting operations, focusing on the academic and practical interest of these topics.This is the first book to deal with the prediction of defects occurring in material forming processes; it contains much of interest from both a theoretical and a practical viewpoint.
Computational Methods for Predicting Material Processing Defects
Author: M. Predeleanu
Publisher: Elsevier
ISBN: 1483298493
Category : Computers
Languages : en
Pages : 375
Book Description
The papers in this book deal with computational methods for predicting material processing defects. Using recent advances in finite strain plasticity and viscoplasticity, damage modelling, bifurcation and instability theory, fracture mechanics and computer numerical techniques, new approaches to mechanical defect analysis are proposed. Appropriate methods for explaining and avoiding the defects leading to fracture, high porosity, strain localization or undesirable geometrical imperfections are presented. In addition, some papers are devoted to new formulations and new calculation algorithms to be used for solving the forming problems. Finally, two papers deal with physical description of defects occurring in forming and cutting operations, focusing on the academic and practical interest of these topics.This is the first book to deal with the prediction of defects occurring in material forming processes; it contains much of interest from both a theoretical and a practical viewpoint.
Publisher: Elsevier
ISBN: 1483298493
Category : Computers
Languages : en
Pages : 375
Book Description
The papers in this book deal with computational methods for predicting material processing defects. Using recent advances in finite strain plasticity and viscoplasticity, damage modelling, bifurcation and instability theory, fracture mechanics and computer numerical techniques, new approaches to mechanical defect analysis are proposed. Appropriate methods for explaining and avoiding the defects leading to fracture, high porosity, strain localization or undesirable geometrical imperfections are presented. In addition, some papers are devoted to new formulations and new calculation algorithms to be used for solving the forming problems. Finally, two papers deal with physical description of defects occurring in forming and cutting operations, focusing on the academic and practical interest of these topics.This is the first book to deal with the prediction of defects occurring in material forming processes; it contains much of interest from both a theoretical and a practical viewpoint.
Materials Processing Defects
Author: M. Predeleanu
Publisher: Elsevier
ISBN: 0080544886
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
The technological field of defects, and more appropriately, avoidance of them, is very current in perhaps all sectors of the manufacturing industry. This is particularly important to reduce/minimize waste everywhere to address lean production procedures. The recent advances in finite plasticity and visioplasticity, damage modelling, instability theories, fracture modelling, computer numerical techniques and process simulation etc. offer new approaches and tools for defect prediction, analyses and guidelines for designing components to be manufactured by traditional and emerging process technologies.This volume contains contributions from well known researchers and experts in the field presenting an up-to-date overview of advances in this area. Subjects covered include: micro- and macro-scale observation of defects; localization and instability analysis; damage modelling and fracture criteria; defect prediction methods; design considerations to avoid defects.
Publisher: Elsevier
ISBN: 0080544886
Category : Technology & Engineering
Languages : en
Pages : 445
Book Description
The technological field of defects, and more appropriately, avoidance of them, is very current in perhaps all sectors of the manufacturing industry. This is particularly important to reduce/minimize waste everywhere to address lean production procedures. The recent advances in finite plasticity and visioplasticity, damage modelling, instability theories, fracture modelling, computer numerical techniques and process simulation etc. offer new approaches and tools for defect prediction, analyses and guidelines for designing components to be manufactured by traditional and emerging process technologies.This volume contains contributions from well known researchers and experts in the field presenting an up-to-date overview of advances in this area. Subjects covered include: micro- and macro-scale observation of defects; localization and instability analysis; damage modelling and fracture criteria; defect prediction methods; design considerations to avoid defects.
Design and Development of Metal-Forming Processes and Products Aided by Finite Element Simulation
Author: Ming Wang Fu
Publisher: Springer
ISBN: 3319464647
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
This book presents state-of-the-art research on forming processes and formed metal product development aided by the Finite Element Method (FEM). Using extensive and informative illustrations, tables and photographs, it systematically presents real-life case studies and established findings regarding various forming processes and methods aided by FEM simulation, and addresses various issues related to metal formed part design, process determination, die design and die service life analysis and prolongation, as well as product quality assurance and improvement. Metal forming has been widely used in many industries. This traditional manufacturing process, however, has long been linked to many years of apprenticeship and skilled craftsmanship, and its conventional design and development paradigm appeared to involve more know-how and trial-and-error than in-depth scientific calculation, analysis and simulation. The design paradigm for forming processes and metal formed product development thus cannot meet the current demands for short development lead-times, low production costs and high product quality. With the advent of numerical simulation technologies, the design and development of forming processes and metal formed products are carried out with the aid of FEM simulation, allowing all the potential design spaces to be identified and evaluated, and the best design to ultimately be determined and implemented. Such a design and development paradigm aims at ensuring “designing right the first time” and reducing the need for trial-and-error in the workshop. This book provides postgraduates, manufacturing engineers and professionals in this field with an in-depth understanding of the design process and sufficient knowledge to support metal formed part design, forming process determination, tooling design, and product quality assurance and control via FEM simulation. “/p>
Publisher: Springer
ISBN: 3319464647
Category : Technology & Engineering
Languages : en
Pages : 258
Book Description
This book presents state-of-the-art research on forming processes and formed metal product development aided by the Finite Element Method (FEM). Using extensive and informative illustrations, tables and photographs, it systematically presents real-life case studies and established findings regarding various forming processes and methods aided by FEM simulation, and addresses various issues related to metal formed part design, process determination, die design and die service life analysis and prolongation, as well as product quality assurance and improvement. Metal forming has been widely used in many industries. This traditional manufacturing process, however, has long been linked to many years of apprenticeship and skilled craftsmanship, and its conventional design and development paradigm appeared to involve more know-how and trial-and-error than in-depth scientific calculation, analysis and simulation. The design paradigm for forming processes and metal formed product development thus cannot meet the current demands for short development lead-times, low production costs and high product quality. With the advent of numerical simulation technologies, the design and development of forming processes and metal formed products are carried out with the aid of FEM simulation, allowing all the potential design spaces to be identified and evaluated, and the best design to ultimately be determined and implemented. Such a design and development paradigm aims at ensuring “designing right the first time” and reducing the need for trial-and-error in the workshop. This book provides postgraduates, manufacturing engineers and professionals in this field with an in-depth understanding of the design process and sufficient knowledge to support metal formed part design, forming process determination, tooling design, and product quality assurance and control via FEM simulation. “/p>
Applied mechanics reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Ductile Fracture in Metal Forming
Author: Kazutake Komori
Publisher: Academic Press
ISBN: 0128147733
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Ductile Fracture in Metal Forming: Modeling and Simulation examines the current understanding of the mechanics and physics of ductile fracture in metal forming processes while also providing an approach to micromechanical ductile fracture prediction that can be applied to all metal forming processes. Starting with an overview of different ductile fracture scenarios, the book then goes on to explain modeling techniques that predict a range of mechanical phenomena that can lead to ductile fracture. The challenges in creating micromechanical models are addressed alongside methods of applying these models to several common metal forming processes. This book is suitable for researchers working in mechanics of materials, metal forming, mechanical metallurgy, and plasticity. Engineers in R&D industries involved in metal forming such as manufacturing, aerospace, and automation will also find the book very useful. - Explains innovative micromechanical modeling techniques for a variety of material behaviors - Examines how these models can be applied to metal forming processes in practice, including blanking, arrowed cracks in drawing, and surface cracks in upset forging - Provides a thorough examination of both macroscopic and microscopic ductile fracture theory
Publisher: Academic Press
ISBN: 0128147733
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Ductile Fracture in Metal Forming: Modeling and Simulation examines the current understanding of the mechanics and physics of ductile fracture in metal forming processes while also providing an approach to micromechanical ductile fracture prediction that can be applied to all metal forming processes. Starting with an overview of different ductile fracture scenarios, the book then goes on to explain modeling techniques that predict a range of mechanical phenomena that can lead to ductile fracture. The challenges in creating micromechanical models are addressed alongside methods of applying these models to several common metal forming processes. This book is suitable for researchers working in mechanics of materials, metal forming, mechanical metallurgy, and plasticity. Engineers in R&D industries involved in metal forming such as manufacturing, aerospace, and automation will also find the book very useful. - Explains innovative micromechanical modeling techniques for a variety of material behaviors - Examines how these models can be applied to metal forming processes in practice, including blanking, arrowed cracks in drawing, and surface cracks in upset forging - Provides a thorough examination of both macroscopic and microscopic ductile fracture theory
Finite Inelastic Deformations — Theory and Applications
Author: Dieter Besdo
Publisher: Springer Science & Business Media
ISBN: 3642848338
Category : Technology & Engineering
Languages : en
Pages : 559
Book Description
The IUTAM-Symposium on "Finite Inelastic Deformations - Theory and Applications" took place from August 19 to 23, 1991, at the University of Hannover, Germany, with 75 participants from 14 countries. Scope of the symposium was a fundamental treatment of new developments in plasticity and visco-plasticity at finite strains. This covered the phenomenological material theory based on continuum mechanics as well as the treatment of microstructural phenomena detected by precise experimental datas. In a restricted number, lectures on new experi mental facilities for measuring finite strains were also implemented into the symposium. Another important topic of the symposium was the treatment of reliable and effective computational methods for solving engineering problems with finite inelastic strains. Wi thin this context it was an essential feature that theory, numerical and computational analysis were be seen in an integrated way. In total 9 sessions with 37 lectures, many of them given by well known keynote-lecturers, and a poster session with 10 contributions met fully our expectations of a high ranking up-to-date forum for the interaction of four topics, namely the physical and mathematical modelling of finite strain inelastic deformations including localizations and damage as well as the achievements in the numerical analysis and implementation and the solution of complicated engineering systems. Special and important features were reliable material datas from macroscopic and microscopic tests as well as test results of complex engineering problems, like deep drawing and extrusion.
Publisher: Springer Science & Business Media
ISBN: 3642848338
Category : Technology & Engineering
Languages : en
Pages : 559
Book Description
The IUTAM-Symposium on "Finite Inelastic Deformations - Theory and Applications" took place from August 19 to 23, 1991, at the University of Hannover, Germany, with 75 participants from 14 countries. Scope of the symposium was a fundamental treatment of new developments in plasticity and visco-plasticity at finite strains. This covered the phenomenological material theory based on continuum mechanics as well as the treatment of microstructural phenomena detected by precise experimental datas. In a restricted number, lectures on new experi mental facilities for measuring finite strains were also implemented into the symposium. Another important topic of the symposium was the treatment of reliable and effective computational methods for solving engineering problems with finite inelastic strains. Wi thin this context it was an essential feature that theory, numerical and computational analysis were be seen in an integrated way. In total 9 sessions with 37 lectures, many of them given by well known keynote-lecturers, and a poster session with 10 contributions met fully our expectations of a high ranking up-to-date forum for the interaction of four topics, namely the physical and mathematical modelling of finite strain inelastic deformations including localizations and damage as well as the achievements in the numerical analysis and implementation and the solution of complicated engineering systems. Special and important features were reliable material datas from macroscopic and microscopic tests as well as test results of complex engineering problems, like deep drawing and extrusion.
Handbook of Workability and Process Design
Author: George E. Dieter
Publisher: ASM International
ISBN: 1615032282
Category : Metals
Languages : en
Pages : 410
Book Description
Publisher: ASM International
ISBN: 1615032282
Category : Metals
Languages : en
Pages : 410
Book Description
Computational Materials Engineering
Author: Maciej Pietrzyk
Publisher: Butterworth-Heinemann
ISBN: 0124167241
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations describes the most common computer modeling and simulation techniques used in metals processing, from so-called "fast" models to more advanced multiscale models, also evaluating possible methods for improving computational accuracy and efficiency. Beginning with a discussion of conventional fast models like internal variable models for flow stress and microstructure evolution, the book moves on to advanced multiscale models, such as the CAFÉ method, which give insights into the phenomena occurring in materials in lower dimensional scales. The book then delves into the various methods that have been developed to deal with problems, including long computing times, lack of proof of the uniqueness of the solution, difficulties with convergence of numerical procedures, local minima in the objective function, and ill-posed problems. It then concludes with suggestions on how to improve accuracy and efficiency in computational materials modeling, and a best practices guide for selecting the best model for a particular application. - Presents the numerical approaches for high-accuracy calculations - Provides researchers with essential information on the methods capable of exact representation of microstructure morphology - Helpful to those working on model classification, computing costs, heterogeneous hardware, modeling efficiency, numerical algorithms, metamodeling, sensitivity analysis, inverse method, clusters, heterogeneous architectures, grid environments, finite element, flow stress, internal variable method, microstructure evolution, and more - Discusses several techniques to overcome modeling and simulation limitations, including distributed computing methods, (hyper) reduced-order-modeling techniques, regularization, statistical representation of material microstructure, and the Gaussian process - Covers both software and hardware capabilities in the area of improved computer efficiency and reduction of computing time
Publisher: Butterworth-Heinemann
ISBN: 0124167241
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
Computational Materials Engineering: Achieving High Accuracy and Efficiency in Metals Processing Simulations describes the most common computer modeling and simulation techniques used in metals processing, from so-called "fast" models to more advanced multiscale models, also evaluating possible methods for improving computational accuracy and efficiency. Beginning with a discussion of conventional fast models like internal variable models for flow stress and microstructure evolution, the book moves on to advanced multiscale models, such as the CAFÉ method, which give insights into the phenomena occurring in materials in lower dimensional scales. The book then delves into the various methods that have been developed to deal with problems, including long computing times, lack of proof of the uniqueness of the solution, difficulties with convergence of numerical procedures, local minima in the objective function, and ill-posed problems. It then concludes with suggestions on how to improve accuracy and efficiency in computational materials modeling, and a best practices guide for selecting the best model for a particular application. - Presents the numerical approaches for high-accuracy calculations - Provides researchers with essential information on the methods capable of exact representation of microstructure morphology - Helpful to those working on model classification, computing costs, heterogeneous hardware, modeling efficiency, numerical algorithms, metamodeling, sensitivity analysis, inverse method, clusters, heterogeneous architectures, grid environments, finite element, flow stress, internal variable method, microstructure evolution, and more - Discusses several techniques to overcome modeling and simulation limitations, including distributed computing methods, (hyper) reduced-order-modeling techniques, regularization, statistical representation of material microstructure, and the Gaussian process - Covers both software and hardware capabilities in the area of improved computer efficiency and reduction of computing time
Alloys Index
Author:
Publisher:
ISBN:
Category : Alloys
Languages : en
Pages : 950
Book Description
Publisher:
ISBN:
Category : Alloys
Languages : en
Pages : 950
Book Description
Collection des publications
Author: Université de Liège. Faculté des sciences appliquées
Publisher:
ISBN:
Category : Technology
Languages : en
Pages : 806
Book Description
Publisher:
ISBN:
Category : Technology
Languages : en
Pages : 806
Book Description