Computational Methods for Functional Interpretation of Diverse Omics Data

Computational Methods for Functional Interpretation of Diverse Omics Data PDF Author: Sumaiya Nazeen
Publisher:
ISBN:
Category :
Languages : en
Pages : 218

Get Book Here

Book Description
Recent technological advances have resulted in an explosive growth of various types of “omics” data, including genomic, transcriptomic, proteomic, and metagenomic data. Functional interpretation of these data is key to elucidating the potential role of different molecular levels (e.g., genome, transcriptome, proteome, metagenome) in human health and disease. However, the massive size and heterogeneity of raw data pose substantial computational and statistical challenges in integrating and interpreting these data. To overcome these challenges, we need sophisticated approaches and scalable analytical frameworks. This thesis outlines two research efforts along these lines. First, we develop a novel three-tiered integrative omics framework for integrating and functionally analyzing heterogeneous omics datasets across a group of co-occurring diseases. We demonstrate the effectiveness of this framework in investigating the shared pathophysiology of autism spectrum disorder (ASD) and its multi-organ-system co-morbid diseases (e.g., inflammatory bowel disease, asthma, muscular dystrophy, cerebral palsy) and uncover a novel innate immunity connection between them. Second, we develop a new end-to-end computational tool, Carnelian, for robust, alignment-free functional profiling of whole metagenome sequencing reads, that is uniquely suited to finding hidden functional trends across diverse data sets in comparative analysis. Carnelian can find shared metabolic pathways, concordant functional dysbioses, and distinguish microbial metabolic function missed by state-of- the-art functional annotation tools. We demonstrate Carnelian’s effectiveness on large-scale metagenomic studies of type-2 diabetes, Crohn’s disease, Parkinson’s disease, and industrialized versus non-industrialized cohorts.

Computational Methods for Functional Interpretation of Diverse Omics Data

Computational Methods for Functional Interpretation of Diverse Omics Data PDF Author: Sumaiya Nazeen
Publisher:
ISBN:
Category :
Languages : en
Pages : 218

Get Book Here

Book Description
Recent technological advances have resulted in an explosive growth of various types of “omics” data, including genomic, transcriptomic, proteomic, and metagenomic data. Functional interpretation of these data is key to elucidating the potential role of different molecular levels (e.g., genome, transcriptome, proteome, metagenome) in human health and disease. However, the massive size and heterogeneity of raw data pose substantial computational and statistical challenges in integrating and interpreting these data. To overcome these challenges, we need sophisticated approaches and scalable analytical frameworks. This thesis outlines two research efforts along these lines. First, we develop a novel three-tiered integrative omics framework for integrating and functionally analyzing heterogeneous omics datasets across a group of co-occurring diseases. We demonstrate the effectiveness of this framework in investigating the shared pathophysiology of autism spectrum disorder (ASD) and its multi-organ-system co-morbid diseases (e.g., inflammatory bowel disease, asthma, muscular dystrophy, cerebral palsy) and uncover a novel innate immunity connection between them. Second, we develop a new end-to-end computational tool, Carnelian, for robust, alignment-free functional profiling of whole metagenome sequencing reads, that is uniquely suited to finding hidden functional trends across diverse data sets in comparative analysis. Carnelian can find shared metabolic pathways, concordant functional dysbioses, and distinguish microbial metabolic function missed by state-of- the-art functional annotation tools. We demonstrate Carnelian’s effectiveness on large-scale metagenomic studies of type-2 diabetes, Crohn’s disease, Parkinson’s disease, and industrialized versus non-industrialized cohorts.

Computational Methods for Multi-Omics Data Analysis in Cancer Precision Medicine

Computational Methods for Multi-Omics Data Analysis in Cancer Precision Medicine PDF Author: Ehsan Nazemalhosseini-Mojarad
Publisher: Frontiers Media SA
ISBN: 2832530389
Category : Science
Languages : en
Pages : 433

Get Book Here

Book Description
Cancer is a complex and heterogeneous disease often caused by different alterations. The development of human cancer is due to the accumulation of genetic and epigenetic modifications that could affect the structure and function of the genome. High-throughput methods (e.g., microarray and next-generation sequencing) can investigate a tumor at multiple levels: i) DNA with genome-wide association studies (GWAS), ii) epigenetic modifications such as DNA methylation, histone changes and microRNAs (miRNAs) iii) mRNA. The availability of public datasets from different multi-omics data has been growing rapidly and could facilitate better knowledge of the biological processes of cancer. Computational approaches are essential for the analysis of big data and the identification of potential biomarkers for early and differential diagnosis, and prognosis.

Evolution of Translational Omics

Evolution of Translational Omics PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309224187
Category : Science
Languages : en
Pages : 354

Get Book Here

Book Description
Technologies collectively called omics enable simultaneous measurement of an enormous number of biomolecules; for example, genomics investigates thousands of DNA sequences, and proteomics examines large numbers of proteins. Scientists are using these technologies to develop innovative tests to detect disease and to predict a patient's likelihood of responding to specific drugs. Following a recent case involving premature use of omics-based tests in cancer clinical trials at Duke University, the NCI requested that the IOM establish a committee to recommend ways to strengthen omics-based test development and evaluation. This report identifies best practices to enhance development, evaluation, and translation of omics-based tests while simultaneously reinforcing steps to ensure that these tests are appropriately assessed for scientific validity before they are used to guide patient treatment in clinical trials.

Computational Methods for Single-Cell Data Analysis

Computational Methods for Single-Cell Data Analysis PDF Author: Guo-Cheng Yuan
Publisher: Humana Press
ISBN: 9781493990566
Category : Science
Languages : en
Pages : 271

Get Book Here

Book Description
This detailed book provides state-of-art computational approaches to further explore the exciting opportunities presented by single-cell technologies. Chapters each detail a computational toolbox aimed to overcome a specific challenge in single-cell analysis, such as data normalization, rare cell-type identification, and spatial transcriptomics analysis, all with a focus on hands-on implementation of computational methods for analyzing experimental data. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Methods for Single-Cell Data Analysis aims to cover a wide range of tasks and serves as a vital handbook for single-cell data analysis.

Computational Genomics with R

Computational Genomics with R PDF Author: Altuna Akalin
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463

Get Book Here

Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.

Multi-omic Data Integration

Multi-omic Data Integration PDF Author: Paolo Tieri
Publisher: Frontiers Media SA
ISBN: 2889196488
Category : Science (General)
Languages : en
Pages : 137

Get Book Here

Book Description
Stable, predictive biomarkers and interpretable disease signatures are seen as a significant step towards personalized medicine. In this perspective, integration of multi-omic data coming from genomics, transcriptomics, glycomics, proteomics, metabolomics is a powerful strategy to reconstruct and analyse complex multi-dimensional interactions, enabling deeper mechanistic and medical insight. At the same time, there is a rising concern that much of such different omic data –although often publicly and freely available- lie in databases and repositories underutilised or not used at all. Issues coming from lack of standardisation and shared biological identities are also well-known. From these considerations, a novel, pressing request arises from the life sciences to design methodologies and approaches that allow for these data to be interpreted as a whole, i.e. as intertwined molecular signatures containing genes, proteins, mRNAs and miRNAs, able to capture inter-layers connections and complexity. Papers discuss data integration approaches and methods of several types and extents, their application in understanding the pathogenesis of specific diseases or in identifying candidate biomarkers to exploit the full benefit of multi-omic datasets and their intrinsic information content. Topics of interest include, but are not limited to: • Methods for the integration of layered data, including, but not limited to, genomics, transcriptomics, glycomics, proteomics, metabolomics; • Application of multi-omic data integration approaches for diagnostic biomarker discovery in any field of the life sciences; • Innovative approaches for the analysis and the visualization of multi-omic datasets; • Methods and applications for systematic measurements from single/undivided samples (comprising genomic, transcriptomic, proteomic, metabolomic measurements, among others); • Multi-scale approaches for integrated dynamic modelling and simulation; • Implementation of applications, computational resources and repositories devoted to data integration including, but not limited to, data warehousing, database federation, semantic integration, service-oriented and/or wiki integration; • Issues related to the definition and implementation of standards, shared identities and semantics, with particular focus on the integration problem. Research papers, reviews and short communications on all topics related to the above issues were welcomed.

Big Data in Omics and Imaging

Big Data in Omics and Imaging PDF Author: Momiao Xiong
Publisher: CRC Press
ISBN: 135117262X
Category : Mathematics
Languages : en
Pages : 580

Get Book Here

Book Description
Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases. FEATURES Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently. Introduce causal inference theory to genomic, epigenomic and imaging data analysis Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies. Bridge the gap between the traditional association analysis and modern causation analysis Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease Develop causal machine learning methods integrating causal inference and machine learning Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell –specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.

Integrating Omics Data

Integrating Omics Data PDF Author: George Tseng
Publisher: Cambridge University Press
ISBN: 1316299406
Category : Medical
Languages : en
Pages : 497

Get Book Here

Book Description
In most modern biomedical research projects, application of high-throughput genomic, proteomic, and transcriptomic experiments has gradually become an inevitable component. Popular technologies include microarray, next generation sequencing, mass spectrometry and proteomics assays. As the technologies have become mature and the price affordable, omics data are rapidly generated, and the problem of information integration and modeling of multi-lab and/or multi-omics data is becoming a growing one in the bioinformatics field. This book provides comprehensive coverage of these topics and will have a long-lasting impact on this evolving subject. Each chapter, written by a leader in the field, introduces state-of-the-art methods to handle information integration, experimental data, and database problems of omics data.

Computational Methods for Integrative Annotation of the Human Regulatory Genome

Computational Methods for Integrative Annotation of the Human Regulatory Genome PDF Author: Tevfik Umut Dincer
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Deciphering the complex regulatory programs controlling gene expression is key to gaining insight into countless biological processes. However, a comprehensive characterization of the regulatory elements controlling expression across diverse cell types remains elusive. Analysis of DNA sequence provides insights into potential regulatory regions but cannot provide functional evidence of regulation on its own. Biochemical assays like ChIP-seq and ATAC-seq map epigenetic marks and regions of open chromatin associated with regulatory activity in a wide variety of cell and tissue types across the genome, but do not directly measure regulatory activity. Functional characterization assays like massively parallel reporter assays or CRISPR interference screens offer more direct evidence of regulatory activity but may have limited genomic coverage and cell type availability. Computational methods integrating these diverse data types can enable the prediction and interpretation of regulatory elements across the genome. Here, I present integrative modeling approaches that combine epigenomic, functional, and DNA sequence data for the comprehensive annotation of the human regulatory genome. First, we introduce ChromActivity, a computational method for annotating the regulatory genome across hundreds of cell and tissue types. ChromActivity integrates epigenomic data across over a hundred human cell and tissue types with a diverse set of functional characterization datasets to generate genomewide annotations of regulatory activity. ChromActivity provides annotations featuring discrete states reflecting combinatorial activity patterns and also continuous activity scores reflecting predicted regulatory element activities. Next, we present SHARPR-seq, a computational method for integrating DNA sequence information to extend the Sharpr-MPRA high-resolution regulatory activity mapping framework. SHARPR-seq improves upon the SHARPR method in multiple evaluation metrics, enabling improved functional dissection of regulatory elements controlling gene expression. These integrative modeling approaches demonstrate the utility of combining complementary data types to provide a more comprehensive understanding of the human regulatory landscape.

Systems Analytics and Integration of Big Omics Data

Systems Analytics and Integration of Big Omics Data PDF Author: Gary Hardiman
Publisher: MDPI
ISBN: 3039287443
Category : Science
Languages : en
Pages : 202

Get Book Here

Book Description
A “genotype" is essentially an organism's full hereditary information which is obtained from its parents. A "phenotype" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This “Big Data” is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of gene–environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome.