Deep Learning in Computational Mechanics

Deep Learning in Computational Mechanics PDF Author: Stefan Kollmannsberger
Publisher: Springer Nature
ISBN: 3030765873
Category : Technology & Engineering
Languages : en
Pages : 108

Get Book Here

Book Description
This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature’s evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.

Deep Learning in Computational Mechanics

Deep Learning in Computational Mechanics PDF Author: Stefan Kollmannsberger
Publisher: Springer Nature
ISBN: 3030765873
Category : Technology & Engineering
Languages : en
Pages : 108

Get Book Here

Book Description
This book provides a first course on deep learning in computational mechanics. The book starts with a short introduction to machine learning’s fundamental concepts before neural networks are explained thoroughly. It then provides an overview of current topics in physics and engineering, setting the stage for the book’s main topics: physics-informed neural networks and the deep energy method. The idea of the book is to provide the basic concepts in a mathematically sound manner and yet to stay as simple as possible. To achieve this goal, mostly one-dimensional examples are investigated, such as approximating functions by neural networks or the simulation of the temperature’s evolution in a one-dimensional bar. Each chapter contains examples and exercises which are either solved analytically or in PyTorch, an open-source machine learning framework for python.

Computational Mechanics with Neural Networks

Computational Mechanics with Neural Networks PDF Author: Genki Yagawa
Publisher: Springer Nature
ISBN: 3030661113
Category : Technology & Engineering
Languages : en
Pages : 233

Get Book Here

Book Description
This book shows how neural networks are applied to computational mechanics. Part I presents the fundamentals of neural networks and other machine learning method in computational mechanics. Part II highlights the applications of neural networks to a variety of problems of computational mechanics. The final chapter gives perspectives to the applications of the deep learning to computational mechanics.

Computational Mechanics with Deep Learning

Computational Mechanics with Deep Learning PDF Author: Genki Yagawa
Publisher: Springer Nature
ISBN: 3031118472
Category : Technology & Engineering
Languages : en
Pages : 408

Get Book Here

Book Description
This book is intended for students, engineers, and researchers interested in both computational mechanics and deep learning. It presents the mathematical and computational foundations of Deep Learning with detailed mathematical formulas in an easy-to-understand manner. It also discusses various applications of Deep Learning in Computational Mechanics, with detailed explanations of the Computational Mechanics fundamentals selected there. Sample programs are included for the reader to try out in practice. This book is therefore useful for a wide range of readers interested in computational mechanics and deep learning.

Data-Driven Science and Engineering

Data-Driven Science and Engineering PDF Author: Steven L. Brunton
Publisher: Cambridge University Press
ISBN: 1009098489
Category : Computers
Languages : en
Pages : 615

Get Book Here

Book Description
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Advances in Theory and Practice of Computational Mechanics

Advances in Theory and Practice of Computational Mechanics PDF Author: Lakhmi C. Jain
Publisher: Springer Nature
ISBN: 9811526001
Category : Technology & Engineering
Languages : en
Pages : 386

Get Book Here

Book Description
This book discusses physical and mathematical models, numerical methods, computational algorithms and software complexes, which allow high-precision mathematical modeling in fluid, gas, and plasma mechanics; general mechanics; deformable solid mechanics; and strength, destruction and safety of structures. These proceedings focus on smart technologies and software systems that provide effective solutions to real-world problems in applied mechanics at various multi-scale levels. Highlighting the training of specialists for the aviation and space industry, it is a valuable resource for experts in the field of applied mathematics and mechanics, mathematical modeling and information technologies, as well as developers of smart applied software systems.

Tensor Voting

Tensor Voting PDF Author: Philippos Mordohai
Publisher: Springer Nature
ISBN: 3031022424
Category : Technology & Engineering
Languages : en
Pages : 126

Get Book Here

Book Description
This lecture presents research on a general framework for perceptual organization that was conducted mainly at the Institute for Robotics and Intelligent Systems of the University of Southern California. It is not written as a historical recount of the work, since the sequence of the presentation is not in chronological order. It aims at presenting an approach to a wide range of problems in computer vision and machine learning that is data-driven, local and requires a minimal number of assumptions. The tensor voting framework combines these properties and provides a unified perceptual organization methodology applicable in situations that may seem heterogeneous initially. We show how several problems can be posed as the organization of the inputs into salient perceptual structures, which are inferred via tensor voting. The work presented here extends the original tensor voting framework with the addition of boundary inference capabilities; a novel re-formulation of the framework applicable to high-dimensional spaces and the development of algorithms for computer vision and machine learning problems. We show complete analysis for some problems, while we briefly outline our approach for other applications and provide pointers to relevant sources.

Immersed Boundary Method

Immersed Boundary Method PDF Author: Somnath Roy
Publisher: Springer Nature
ISBN: 9811539405
Category : Technology & Engineering
Languages : en
Pages : 441

Get Book Here

Book Description
This volume presents the emerging applications of immersed boundary (IB) methods in computational mechanics and complex CFD calculations. It discusses formulations of different IB implementations and also demonstrates applications of these methods in a wide range of problems. It will be of special value to researchers and engineers as well as graduate students working on immersed boundary methods, specifically on recent developments and applications. The book can also be used as a supplementary textbook in advanced courses in computational fluid dynamics.

Proceedings of the International Conference on Advances in Computational Mechanics 2017

Proceedings of the International Conference on Advances in Computational Mechanics 2017 PDF Author: Hung Nguyen-Xuan
Publisher: Springer
ISBN: 9811071497
Category : Technology & Engineering
Languages : en
Pages : 1137

Get Book Here

Book Description
This book provides an overview of state-of-the-art methods in computational engineering for modeling and simulation. This proceedings volume includes a selection of refereed papers presented at the International Conference on Advances in Computational Mechanics (ACOME) 2017, which took place on Phu Quoc Island, Vietnam on August 2-4, 2017. The contributions highlight recent advances in and innovative applications of computational mechanics. Subjects covered include: biological systems; damage, fracture and failure; flow problems; multiscale multiphysics problems; composites and hybrid structures; optimization and inverse problems; lightweight structures; computational mechatronics; computational dynamics; numerical methods; and high-performance computing. The book is intended for academics, including graduate students and experienced researchers interested in state-of-the-art computational methods for solving challenging problems in engineering.

Deep Learning in Science

Deep Learning in Science PDF Author: Pierre Baldi
Publisher: Cambridge University Press
ISBN: 1108845355
Category : Computers
Languages : en
Pages : 387

Get Book Here

Book Description
Rigorous treatment of the theory of deep learning from first principles, with applications to beautiful problems in the natural sciences.

Current Trends and Open Problems in Computational Mechanics

Current Trends and Open Problems in Computational Mechanics PDF Author: Fadi Aldakheel
Publisher: Springer Nature
ISBN: 3030873129
Category : Science
Languages : en
Pages : 587

Get Book Here

Book Description
This Festschrift is dedicated to Professor Dr.-Ing. habil. Peter Wriggers on the occasion of his 70th birthday. Thanks to his high dedication to research, over the years Peter Wriggers has built an international network with renowned experts in the field of computational mechanics. This is proven by the large number of contributions from friends and collaborators as well as former PhD students from all over the world. The diversity of Peter Wriggers network is mirrored by the range of topics that are covered by this book. To name only a few, these include contact mechanics, finite & virtual element technologies, micromechanics, multiscale approaches, fracture mechanics, isogeometric analysis, stochastic methods, meshfree and particle methods. Applications of numerical simulation to specific problems, e.g. Biomechanics and Additive Manufacturing is also covered. The volume intends to present an overview of the state of the art and current trends in computational mechanics for academia and industry.