Author: Russell Greiner
Publisher: MIT Press
ISBN: 9780262571180
Category : Computational learning theory
Languages : en
Pages : 440
Book Description
This is the fourth and final volume of papers from a series of workshops called "Computational Learning Theory and Ǹatural' Learning Systems." The purpose of the workshops was to explore the emerging intersection of theoretical learning research and natural learning systems. The workshops drew researchers from three historically distinct styles of learning research: computational learning theory, neural networks, and machine learning (a subfield of AI). Volume I of the series introduces the general focus of the workshops. Volume II looks at specific areas of interaction between theory and experiment. Volumes III and IV focus on key areas of learning systems that have developed recently. Volume III looks at the problem of "Selecting Good Models." The present volume, Volume IV, looks at ways of "Making Learning Systems Practical." The editors divide the twenty-one contributions into four sections. The first three cover critical problem areas: 1) scaling up from small problems to realistic ones with large input dimensions, 2) increasing efficiency and robustness of learning methods, and 3) developing strategies to obtain good generalization from limited or small data samples. The fourth section discusses examples of real-world learning systems. Contributors : Klaus Abraham-Fuchs, Yasuhiro Akiba, Hussein Almuallim, Arunava Banerjee, Sanjay Bhansali, Alvis Brazma, Gustavo Deco, David Garvin, Zoubin Ghahramani, Mostefa Golea, Russell Greiner, Mehdi T. Harandi, John G. Harris, Haym Hirsh, Michael I. Jordan, Shigeo Kaneda, Marjorie Klenin, Pat Langley, Yong Liu, Patrick M. Murphy, Ralph Neuneier, E.M. Oblow, Dragan Obradovic, Michael J. Pazzani, Barak A. Pearlmutter, Nageswara S.V. Rao, Peter Rayner, Stephanie Sage, Martin F. Schlang, Bernd Schurmann, Dale Schuurmans, Leon Shklar, V. Sundareswaran, Geoffrey Towell, Johann Uebler, Lucia M. Vaina, Takefumi Yamazaki, Anthony M. Zador.
Computational Learning Theory and Natural Learning Systems: Making learning systems practical
Author: Russell Greiner
Publisher: MIT Press
ISBN: 9780262571180
Category : Computational learning theory
Languages : en
Pages : 440
Book Description
This is the fourth and final volume of papers from a series of workshops called "Computational Learning Theory and Ǹatural' Learning Systems." The purpose of the workshops was to explore the emerging intersection of theoretical learning research and natural learning systems. The workshops drew researchers from three historically distinct styles of learning research: computational learning theory, neural networks, and machine learning (a subfield of AI). Volume I of the series introduces the general focus of the workshops. Volume II looks at specific areas of interaction between theory and experiment. Volumes III and IV focus on key areas of learning systems that have developed recently. Volume III looks at the problem of "Selecting Good Models." The present volume, Volume IV, looks at ways of "Making Learning Systems Practical." The editors divide the twenty-one contributions into four sections. The first three cover critical problem areas: 1) scaling up from small problems to realistic ones with large input dimensions, 2) increasing efficiency and robustness of learning methods, and 3) developing strategies to obtain good generalization from limited or small data samples. The fourth section discusses examples of real-world learning systems. Contributors : Klaus Abraham-Fuchs, Yasuhiro Akiba, Hussein Almuallim, Arunava Banerjee, Sanjay Bhansali, Alvis Brazma, Gustavo Deco, David Garvin, Zoubin Ghahramani, Mostefa Golea, Russell Greiner, Mehdi T. Harandi, John G. Harris, Haym Hirsh, Michael I. Jordan, Shigeo Kaneda, Marjorie Klenin, Pat Langley, Yong Liu, Patrick M. Murphy, Ralph Neuneier, E.M. Oblow, Dragan Obradovic, Michael J. Pazzani, Barak A. Pearlmutter, Nageswara S.V. Rao, Peter Rayner, Stephanie Sage, Martin F. Schlang, Bernd Schurmann, Dale Schuurmans, Leon Shklar, V. Sundareswaran, Geoffrey Towell, Johann Uebler, Lucia M. Vaina, Takefumi Yamazaki, Anthony M. Zador.
Publisher: MIT Press
ISBN: 9780262571180
Category : Computational learning theory
Languages : en
Pages : 440
Book Description
This is the fourth and final volume of papers from a series of workshops called "Computational Learning Theory and Ǹatural' Learning Systems." The purpose of the workshops was to explore the emerging intersection of theoretical learning research and natural learning systems. The workshops drew researchers from three historically distinct styles of learning research: computational learning theory, neural networks, and machine learning (a subfield of AI). Volume I of the series introduces the general focus of the workshops. Volume II looks at specific areas of interaction between theory and experiment. Volumes III and IV focus on key areas of learning systems that have developed recently. Volume III looks at the problem of "Selecting Good Models." The present volume, Volume IV, looks at ways of "Making Learning Systems Practical." The editors divide the twenty-one contributions into four sections. The first three cover critical problem areas: 1) scaling up from small problems to realistic ones with large input dimensions, 2) increasing efficiency and robustness of learning methods, and 3) developing strategies to obtain good generalization from limited or small data samples. The fourth section discusses examples of real-world learning systems. Contributors : Klaus Abraham-Fuchs, Yasuhiro Akiba, Hussein Almuallim, Arunava Banerjee, Sanjay Bhansali, Alvis Brazma, Gustavo Deco, David Garvin, Zoubin Ghahramani, Mostefa Golea, Russell Greiner, Mehdi T. Harandi, John G. Harris, Haym Hirsh, Michael I. Jordan, Shigeo Kaneda, Marjorie Klenin, Pat Langley, Yong Liu, Patrick M. Murphy, Ralph Neuneier, E.M. Oblow, Dragan Obradovic, Michael J. Pazzani, Barak A. Pearlmutter, Nageswara S.V. Rao, Peter Rayner, Stephanie Sage, Martin F. Schlang, Bernd Schurmann, Dale Schuurmans, Leon Shklar, V. Sundareswaran, Geoffrey Towell, Johann Uebler, Lucia M. Vaina, Takefumi Yamazaki, Anthony M. Zador.
Computational Learning Theory and Natural Learning Systems
Author: Thomas Petsche
Publisher:
ISBN:
Category : Machine learning
Languages : en
Pages : 407
Book Description
Publisher:
ISBN:
Category : Machine learning
Languages : en
Pages : 407
Book Description
Computational Learning Theory and Natural Learning Systems: Intersections between theory and experiment
Author: Stephen José Hanson
Publisher: Mit Press
ISBN: 9780262581332
Category : Computers
Languages : en
Pages : 449
Book Description
Annotation These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems. In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve? Stephen J. Hanson heads the Learning Systems Department at Siemens Corporate Research and is a Visiting Member of the Research Staff and Research Collaborator at the Cognitive Science Laboratory at Princeton University. George A. Drastal is Senior Research Scientist at Siemens Corporate Research. Ronald J. Rivest is Professor of Computer Science and Associate Director of the Laboratory for Computer Science at the Massachusetts Institute of Technology.
Publisher: Mit Press
ISBN: 9780262581332
Category : Computers
Languages : en
Pages : 449
Book Description
Annotation These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems. In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve? Stephen J. Hanson heads the Learning Systems Department at Siemens Corporate Research and is a Visiting Member of the Research Staff and Research Collaborator at the Cognitive Science Laboratory at Princeton University. George A. Drastal is Senior Research Scientist at Siemens Corporate Research. Ronald J. Rivest is Professor of Computer Science and Associate Director of the Laboratory for Computer Science at the Massachusetts Institute of Technology.
Algorithmic Learning Theory
Author: Sanjay Jain
Publisher: Springer
ISBN: 3540316965
Category : Computers
Languages : en
Pages : 502
Book Description
This book constitutes the refereed proceedings of the 16th International Conference on Algorithmic Learning Theory, ALT 2005, held in Singapore in October 2005. The 30 revised full papers presented together with 5 invited papers and an introduction by the editors were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on kernel-based learning, bayesian and statistical models, PAilearning, query-learning, inductive inference, language learning, learning and logic, learning from expert advice, online learning, defensive forecasting, and teaching.
Publisher: Springer
ISBN: 3540316965
Category : Computers
Languages : en
Pages : 502
Book Description
This book constitutes the refereed proceedings of the 16th International Conference on Algorithmic Learning Theory, ALT 2005, held in Singapore in October 2005. The 30 revised full papers presented together with 5 invited papers and an introduction by the editors were carefully reviewed and selected from 98 submissions. The papers are organized in topical sections on kernel-based learning, bayesian and statistical models, PAilearning, query-learning, inductive inference, language learning, learning and logic, learning from expert advice, online learning, defensive forecasting, and teaching.
Advances in Classification and Data Analysis
Author: Simone Borra
Publisher: Springer Science & Business Media
ISBN: 3642594719
Category : Business & Economics
Languages : en
Pages : 384
Book Description
This volume contains a selection of papers presented at the biannual meeting of the Classification and Data Analysis Group of Societa Italiana di Statistica, which was held in Rome, July 5-6, 1999. From the originally submitted papers, a careful review process led to the selection of 45 papers presented in four parts as follows: CLASSIFICATION AND MULTIDIMENSIONAL SCALING Cluster analysis Discriminant analysis Proximity structures analysis and Multidimensional Scaling Genetic algorithms and neural networks MUL TIV ARIA TE DATA ANALYSIS Factorial methods Textual data analysis Regression Models for Data Analysis Nonparametric methods SPATIAL AND TIME SERIES DATA ANALYSIS Time series analysis Spatial data analysis CASE STUDIES INTERNATIONAL FEDERATION OF CLASSIFICATION SOCIETIES The International Federation of Classification Societies (IFCS) is an agency for the dissemination of technical and scientific information concerning classification and data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) from the following Scientific Societies and Groups: British Classification Society -BCS; Classification Society of North America - CSNA; Gesellschaft fUr Klassifikation - GfKI; Japanese Classification Society -JCS; Classification Group of Italian Statistical Society - CGSIS; Societe Francophone de Classification -SFC. Now the IFCS includes also the following Societies: Dutch-Belgian Classification Society - VOC; Polish Classification Society -SKAD; Associayao Portuguesa de Classificayao e Analise de Dados -CLAD; Korean Classification Society -KCS; Group-at-Large.
Publisher: Springer Science & Business Media
ISBN: 3642594719
Category : Business & Economics
Languages : en
Pages : 384
Book Description
This volume contains a selection of papers presented at the biannual meeting of the Classification and Data Analysis Group of Societa Italiana di Statistica, which was held in Rome, July 5-6, 1999. From the originally submitted papers, a careful review process led to the selection of 45 papers presented in four parts as follows: CLASSIFICATION AND MULTIDIMENSIONAL SCALING Cluster analysis Discriminant analysis Proximity structures analysis and Multidimensional Scaling Genetic algorithms and neural networks MUL TIV ARIA TE DATA ANALYSIS Factorial methods Textual data analysis Regression Models for Data Analysis Nonparametric methods SPATIAL AND TIME SERIES DATA ANALYSIS Time series analysis Spatial data analysis CASE STUDIES INTERNATIONAL FEDERATION OF CLASSIFICATION SOCIETIES The International Federation of Classification Societies (IFCS) is an agency for the dissemination of technical and scientific information concerning classification and data analysis in the broad sense and in as wide a range of applications as possible; founded in 1985 in Cambridge (UK) from the following Scientific Societies and Groups: British Classification Society -BCS; Classification Society of North America - CSNA; Gesellschaft fUr Klassifikation - GfKI; Japanese Classification Society -JCS; Classification Group of Italian Statistical Society - CGSIS; Societe Francophone de Classification -SFC. Now the IFCS includes also the following Societies: Dutch-Belgian Classification Society - VOC; Polish Classification Society -SKAD; Associayao Portuguesa de Classificayao e Analise de Dados -CLAD; Korean Classification Society -KCS; Group-at-Large.
Digital Methods and Remote Sensing in Archaeology
Author: Maurizio Forte
Publisher: Springer
ISBN: 3319406582
Category : Social Science
Languages : en
Pages : 499
Book Description
This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscapes and built environments that reveal history through place and time. It is about new perspectives—the views of history possible with Remote Sensing and fostered in part by immersive, interactive 3D and 4D environments discussed in this volume. These perspectives are both the result and the implementation of technological, cultural, and epistemological advances in record keeping, interpretation, and conceptualization. Methodology presented here builds on the current ease and speed in collecting data sets on the scale of the object, site, locality, and landscape. As this volume shows, many disciplines surrounding archaeology and related cultural studies are currently involved in Remote Sensing, and its relevance will only increase as the methodology expands.
Publisher: Springer
ISBN: 3319406582
Category : Social Science
Languages : en
Pages : 499
Book Description
This volume debuts the new scope of Remote Sensing, which was first defined as the analysis of data collected by sensors that were not in physical contact with the objects under investigation (using cameras, scanners, and radar systems operating from spaceborne or airborne platforms). A wider characterization is now possible: Remote Sensing can be any non-destructive approach to viewing the buried and nominally invisible evidence of past activity. Spaceborne and airborne sensors, now supplemented by laser scanning, are united using ground-based geophysical instruments and undersea remote sensing, as well as other non-invasive techniques such as surface collection or field-walking survey. Now, any method that enables observation of evidence on or beneath the surface of the earth, without impact on the surviving stratigraphy, is legitimately within the realm of Remote Sensing. The new interfaces and senses engaged in Remote Sensing appear throughout the book. On a philosophical level, this is about the landscapes and built environments that reveal history through place and time. It is about new perspectives—the views of history possible with Remote Sensing and fostered in part by immersive, interactive 3D and 4D environments discussed in this volume. These perspectives are both the result and the implementation of technological, cultural, and epistemological advances in record keeping, interpretation, and conceptualization. Methodology presented here builds on the current ease and speed in collecting data sets on the scale of the object, site, locality, and landscape. As this volume shows, many disciplines surrounding archaeology and related cultural studies are currently involved in Remote Sensing, and its relevance will only increase as the methodology expands.
Multisensor Fusion
Author: Anthony K. Hyder
Publisher: Springer Science & Business Media
ISBN: 9401005567
Category : Computers
Languages : en
Pages : 929
Book Description
For some time, all branches of the military have used a wide range of sensors to provide data for many purposes, including surveillance, reconnoitring, target detection and battle damage assessment. Many nations have also attempted to utilise these sensors for civilian applications, such as crop monitoring, agricultural disease tracking, environmental diagnostics, cartography, ocean temperature profiling, urban planning, and the characterisation of the Ozone Hole above Antarctica. The recent convergence of several important technologies has made possible new, advanced, high performance, sensor based applications relying on the near-simultaneous fusion of data from an ensemble of different types of sensors. The book examines the underlying principles of sensor operation and data fusion, the techniques and technologies that enable the process, including the operation of 'fusion engines'. Fundamental theory and the enabling technologies of data fusion are presented in a systematic and accessible manner. Applications are discussed in the areas of medicine, meteorology, BDA and targeting, transportation, cartography, the environment, agriculture, and manufacturing and process control.
Publisher: Springer Science & Business Media
ISBN: 9401005567
Category : Computers
Languages : en
Pages : 929
Book Description
For some time, all branches of the military have used a wide range of sensors to provide data for many purposes, including surveillance, reconnoitring, target detection and battle damage assessment. Many nations have also attempted to utilise these sensors for civilian applications, such as crop monitoring, agricultural disease tracking, environmental diagnostics, cartography, ocean temperature profiling, urban planning, and the characterisation of the Ozone Hole above Antarctica. The recent convergence of several important technologies has made possible new, advanced, high performance, sensor based applications relying on the near-simultaneous fusion of data from an ensemble of different types of sensors. The book examines the underlying principles of sensor operation and data fusion, the techniques and technologies that enable the process, including the operation of 'fusion engines'. Fundamental theory and the enabling technologies of data fusion are presented in a systematic and accessible manner. Applications are discussed in the areas of medicine, meteorology, BDA and targeting, transportation, cartography, the environment, agriculture, and manufacturing and process control.
Distributed Sensor Networks
Author: S. Sitharama Iyengar
Publisher: CRC Press
ISBN: 1439870780
Category : Computers
Languages : en
Pages : 1142
Book Description
The vision of researchers to create smart environments through the deployment of thousands of sensors, each with a short range wireless communications channel and capable of detecting ambient conditions such as temperature, movement, sound, light, or the presence of certain objects is becoming a reality. With the emergence of high-speed networks an
Publisher: CRC Press
ISBN: 1439870780
Category : Computers
Languages : en
Pages : 1142
Book Description
The vision of researchers to create smart environments through the deployment of thousands of sensors, each with a short range wireless communications channel and capable of detecting ambient conditions such as temperature, movement, sound, light, or the presence of certain objects is becoming a reality. With the emergence of high-speed networks an
Author:
Publisher: CRC Press
ISBN: 1135439621
Category :
Languages : en
Pages : 1142
Book Description
Publisher: CRC Press
ISBN: 1135439621
Category :
Languages : en
Pages : 1142
Book Description
Distributed Sensor Networks, Second Edition
Author: S. Sitharama Iyengar
Publisher: CRC Press
ISBN: 1439862826
Category : Computers
Languages : en
Pages : 767
Book Description
The best-selling Distributed Sensor Networks became the definitive guide to understanding this far-reaching technology. Preserving the excellence and accessibility of its predecessor, Distributed Sensor Networks, Second Edition once again provides all the fundamentals and applications in one complete, self-contained source. Ideal as a tutorial for students or as research material for engineers, the book gives readers up-to-date, practical insight on all aspects of the field. Revised and expanded, this second edition incorporates contributions from many veterans of the DARPA ISO SENSIT program as well as new material from distinguished researchers in the field. Image and Sensor Signal Processing focuses on software issues and the history and future of sensor networks. The book also covers information fusion and power management. Readers of this book may also be interested in Distributed Sensor Networks, Second Edition: Sensor Networking and Applications (ISBN: 9781439862872).
Publisher: CRC Press
ISBN: 1439862826
Category : Computers
Languages : en
Pages : 767
Book Description
The best-selling Distributed Sensor Networks became the definitive guide to understanding this far-reaching technology. Preserving the excellence and accessibility of its predecessor, Distributed Sensor Networks, Second Edition once again provides all the fundamentals and applications in one complete, self-contained source. Ideal as a tutorial for students or as research material for engineers, the book gives readers up-to-date, practical insight on all aspects of the field. Revised and expanded, this second edition incorporates contributions from many veterans of the DARPA ISO SENSIT program as well as new material from distinguished researchers in the field. Image and Sensor Signal Processing focuses on software issues and the history and future of sensor networks. The book also covers information fusion and power management. Readers of this book may also be interested in Distributed Sensor Networks, Second Edition: Sensor Networking and Applications (ISBN: 9781439862872).