Computational Homology

Computational Homology PDF Author: Tomasz Kaczynski
Publisher: Springer Science & Business Media
ISBN: 0387215972
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.

Computational Homology

Computational Homology PDF Author: Tomasz Kaczynski
Publisher: Springer Science & Business Media
ISBN: 0387215972
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.

Computational Topology for Data Analysis

Computational Topology for Data Analysis PDF Author: Tamal Krishna Dey
Publisher: Cambridge University Press
ISBN: 1009103199
Category : Mathematics
Languages : en
Pages : 456

Get Book Here

Book Description
Topological data analysis (TDA) has emerged recently as a viable tool for analyzing complex data, and the area has grown substantially both in its methodologies and applicability. Providing a computational and algorithmic foundation for techniques in TDA, this comprehensive, self-contained text introduces students and researchers in mathematics and computer science to the current state of the field. The book features a description of mathematical objects and constructs behind recent advances, the algorithms involved, computational considerations, as well as examples of topological structures or ideas that can be used in applications. It provides a thorough treatment of persistent homology together with various extensions – like zigzag persistence and multiparameter persistence – and their applications to different types of data, like point clouds, triangulations, or graph data. Other important topics covered include discrete Morse theory, the Mapper structure, optimal generating cycles, as well as recent advances in embedding TDA within machine learning frameworks.

Computational Topology

Computational Topology PDF Author: Herbert Edelsbrunner
Publisher: American Mathematical Society
ISBN: 1470467690
Category : Mathematics
Languages : en
Pages : 241

Get Book Here

Book Description
Combining concepts from topology and algorithms, this book delivers what its title promises: an introduction to the field of computational topology. Starting with motivating problems in both mathematics and computer science and building up from classic topics in geometric and algebraic topology, the third part of the text advances to persistent homology. This point of view is critically important in turning a mostly theoretical field of mathematics into one that is relevant to a multitude of disciplines in the sciences and engineering. The main approach is the discovery of topology through algorithms. The book is ideal for teaching a graduate or advanced undergraduate course in computational topology, as it develops all the background of both the mathematical and algorithmic aspects of the subject from first principles. Thus the text could serve equally well in a course taught in a mathematics department or computer science department.

Computational Topology for Biomedical Image and Data Analysis

Computational Topology for Biomedical Image and Data Analysis PDF Author: Rodrigo Rojas Moraleda
Publisher: CRC Press
ISBN: 0429810997
Category : Technology & Engineering
Languages : en
Pages : 139

Get Book Here

Book Description
This book provides an accessible yet rigorous introduction to topology and homology focused on the simplicial space. It presents a compact pipeline from the foundations of topology to biomedical applications. It will be of interest to medical physicists, computer scientists, and engineers, as well as undergraduate and graduate students interested in this topic. Features: Presents a practical guide to algebraic topology as well as persistence homology Contains application examples in the field of biomedicine, including the analysis of histological images and point cloud data

A Short Course in Computational Geometry and Topology

A Short Course in Computational Geometry and Topology PDF Author: Herbert Edelsbrunner
Publisher: Springer Science & Business
ISBN: 3319059572
Category : Computers
Languages : en
Pages : 105

Get Book Here

Book Description
This monograph presents a short course in computational geometry and topology. In the first part the book covers Voronoi diagrams and Delaunay triangulations, then it presents the theory of alpha complexes which play a crucial role in biology. The central part of the book is the homology theory and their computation, including the theory of persistence which is indispensable for applications, e.g. shape reconstruction. The target audience comprises researchers and practitioners in mathematics, biology, neuroscience and computer science, but the book may also be beneficial to graduate students of these fields.

Persistence Theory: From Quiver Representations to Data Analysis

Persistence Theory: From Quiver Representations to Data Analysis PDF Author: Steve Y. Oudot
Publisher: American Mathematical Soc.
ISBN: 1470434431
Category : Mathematics
Languages : en
Pages : 229

Get Book Here

Book Description
Persistence theory emerged in the early 2000s as a new theory in the area of applied and computational topology. This book provides a broad and modern view of the subject, including its algebraic, topological, and algorithmic aspects. It also elaborates on applications in data analysis. The level of detail of the exposition has been set so as to keep a survey style, while providing sufficient insights into the proofs so the reader can understand the mechanisms at work. The book is organized into three parts. The first part is dedicated to the foundations of persistence and emphasizes its connection to quiver representation theory. The second part focuses on its connection to applications through a few selected topics. The third part provides perspectives for both the theory and its applications. The book can be used as a text for a course on applied topology or data analysis.

Computational Homology

Computational Homology PDF Author: Tomasz Kaczynski
Publisher: Springer Science & Business Media
ISBN: 0387408533
Category : Mathematics
Languages : en
Pages : 485

Get Book Here

Book Description
Homology is a powerful tool used by mathematicians to study the properties of spaces and maps that are insensitive to small perturbations. This book uses a computer to develop a combinatorial computational approach to the subject. The core of the book deals with homology theory and its computation. Following this is a section containing extensions to further developments in algebraic topology, applications to computational dynamics, and applications to image processing. Included are exercises and software that can be used to compute homology groups and maps. The book will appeal to researchers and graduate students in mathematics, computer science, engineering, and nonlinear dynamics.

Topological Methods in Data Analysis and Visualization II

Topological Methods in Data Analysis and Visualization II PDF Author: Ronald Peikert
Publisher: Springer Science & Business Media
ISBN: 3642231756
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
When scientists analyze datasets in a search for underlying phenomena, patterns or causal factors, their first step is often an automatic or semi-automatic search for structures in the data. Of these feature-extraction methods, topological ones stand out due to their solid mathematical foundation. Topologically defined structures—as found in scalar, vector and tensor fields—have proven their merit in a wide range of scientific domains, and scientists have found them to be revealing in subjects such as physics, engineering, and medicine. Full of state-of-the-art research and contemporary hot topics in the subject, this volume is a selection of peer-reviewed papers originally presented at the fourth Workshop on Topology-Based Methods in Data Analysis and Visualization, TopoInVis 2011, held in Zurich, Switzerland. The workshop brought together many of the leading lights in the field for a mixture of formal presentations and discussion. One topic currently generating a great deal of interest, and explored in several chapters here, is the search for topological structures in time-dependent flows, and their relationship with Lagrangian coherent structures. Contributors also focus on discrete topologies of scalar and vector fields, and on persistence-based simplification, among other issues of note. The new research results included in this volume relate to all three key areas in data analysis—theory, algorithms and applications.

Computational Topology in Image Context

Computational Topology in Image Context PDF Author: Massimo Ferri
Publisher: Springer
ISBN: 3642302386
Category : Computers
Languages : en
Pages : 166

Get Book Here

Book Description
This book constitutes the proceedings of the 4th International Workshop on Computational Topology in Image Context, CTIC 2012, held in Bertinoro, Italy, in May 2012. The 16 papers presented in this volume were carefully reviewed and selected for inclusion in this book. They focus on the topology and computation in image context. The workshop is devoted to computational methods using topology for the analysis and comparison of images. The involved research fields comprise computational topology and geometry, discrete topology and geometry, geometrical modeling, algebraic topology for image applications, and any other field involving a geometric-topological approach to image processing.

Advances in Applied and Computational Topology

Advances in Applied and Computational Topology PDF Author: American Mathematical Society. Short Course on Computational Topology
Publisher: American Mathematical Soc.
ISBN: 0821853279
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
What is the shape of data? How do we describe flows? Can we count by integrating? How do we plan with uncertainty? What is the most compact representation? These questions, while unrelated, become similar when recast into a computational setting. Our input is a set of finite, discrete, noisy samples that describes an abstract space. Our goal is to compute qualitative features of the unknown space. It turns out that topology is sufficiently tolerant to provide us with robust tools. This volume is based on lectures delivered at the 2011 AMS Short Course on Computational Topology, held January 4-5, 2011 in New Orleans, Louisiana. The aim of the volume is to provide a broad introduction to recent techniques from applied and computational topology. Afra Zomorodian focuses on topological data analysis via efficient construction of combinatorial structures and recent theories of persistence. Marian Mrozek analyzes asymptotic behavior of dynamical systems via efficient computation of cubical homology. Justin Curry, Robert Ghrist, and Michael Robinson present Euler Calculus, an integral calculus based on the Euler characteristic, and apply it to sensor and network data aggregation. Michael Erdmann explores the relationship of topology, planning, and probability with the strategy complex. Jeff Erickson surveys algorithms and hardness results for topological optimization problems.