Computational Exploration of Flash-boiling Internal Flow and Near-nozzle Spray

Computational Exploration of Flash-boiling Internal Flow and Near-nozzle Spray PDF Author: Sampath K. Rachakonda
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Gasoline engines operating under the principle of direct injection are susceptible to flash-boiling due to superheated nature of the fuel and the sub-atmospheric in-cylinder pressures during injection. A review of the literature on flash-boiling sprays shows that a majority of the studies have focused on the far-field regions of the spray, with limited attention given to understanding the influences of the injector geometry and the near-nozzle regions of the spray. Modeling the internal nozzle flow and the primary atomization, on which the far-field spray depends, is a challenge. This thesis, therefore, is aimed at understanding the complex flow through a fuel injector nozzle and the nature of the spray in the near-nozzle region, with the help of computer simulations under flash-boiling and non-flash-boiling conditions. In the current study, the simulations were performed using an in-house Eulerian CFD solver called HRMFoam. Improvements to the solver's near-nozzle spray modeling capability are discussed. These improvements include the implementation of a liquid-gas interface-area-density transport equation to model the primary atomization process. The simulations of direct injection of gasoline and gasoline-like sprays were performed on single-hole and multi-hole injectors, for a wide range of operating conditions. Spray characteristics such as the nozzle's coefficient of discharge and the mean droplet diameter in the dense region of the spray were seen to be captured adequately well with the help of a 2D axi-symmetry assumption in the case of single-hole injectors. A novel approach to identify the near-nozzle spray plume boundary in CFD simulations is presented and validated against experimental measurements for a single-hole asymmetric injector. Case studies on single-hole asymmetric injectors revealed a direct correlation between the drill angle of the nozzle and near-nozzle spray plume angle. A hypothesis of the similarity between a stepped-hole two-phase nozzle and a conventional single-phase converging-diverging nozzle is presented. Furthermore, it was observed that flash-boiling jets behave as underexpanded jets, and therefore, are wider. Whereas, non-flash-boiling behave as overexpanded jets, and thus are narrower. Through the case studies on multi-hole injectors, the collapse of the spray or lack thereof was qualitatively and quantitatively characterized. In this process, a resemblance between the experimentally and computationally identified spray collapse mechanism was established. The application of LES modeling to internal and near-nozzle GDI sprays was explored in a pilot study, and the results were qualitatively validated against the experimentally available near-nozzle X-ray radiography measurements. Finally, in another pilot study, an attempt to model the interphase slip velocity is discussed.

Computational Exploration of Flash-boiling Internal Flow and Near-nozzle Spray

Computational Exploration of Flash-boiling Internal Flow and Near-nozzle Spray PDF Author: Sampath K. Rachakonda
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Gasoline engines operating under the principle of direct injection are susceptible to flash-boiling due to superheated nature of the fuel and the sub-atmospheric in-cylinder pressures during injection. A review of the literature on flash-boiling sprays shows that a majority of the studies have focused on the far-field regions of the spray, with limited attention given to understanding the influences of the injector geometry and the near-nozzle regions of the spray. Modeling the internal nozzle flow and the primary atomization, on which the far-field spray depends, is a challenge. This thesis, therefore, is aimed at understanding the complex flow through a fuel injector nozzle and the nature of the spray in the near-nozzle region, with the help of computer simulations under flash-boiling and non-flash-boiling conditions. In the current study, the simulations were performed using an in-house Eulerian CFD solver called HRMFoam. Improvements to the solver's near-nozzle spray modeling capability are discussed. These improvements include the implementation of a liquid-gas interface-area-density transport equation to model the primary atomization process. The simulations of direct injection of gasoline and gasoline-like sprays were performed on single-hole and multi-hole injectors, for a wide range of operating conditions. Spray characteristics such as the nozzle's coefficient of discharge and the mean droplet diameter in the dense region of the spray were seen to be captured adequately well with the help of a 2D axi-symmetry assumption in the case of single-hole injectors. A novel approach to identify the near-nozzle spray plume boundary in CFD simulations is presented and validated against experimental measurements for a single-hole asymmetric injector. Case studies on single-hole asymmetric injectors revealed a direct correlation between the drill angle of the nozzle and near-nozzle spray plume angle. A hypothesis of the similarity between a stepped-hole two-phase nozzle and a conventional single-phase converging-diverging nozzle is presented. Furthermore, it was observed that flash-boiling jets behave as underexpanded jets, and therefore, are wider. Whereas, non-flash-boiling behave as overexpanded jets, and thus are narrower. Through the case studies on multi-hole injectors, the collapse of the spray or lack thereof was qualitatively and quantitatively characterized. In this process, a resemblance between the experimentally and computationally identified spray collapse mechanism was established. The application of LES modeling to internal and near-nozzle GDI sprays was explored in a pilot study, and the results were qualitatively validated against the experimentally available near-nozzle X-ray radiography measurements. Finally, in another pilot study, an attempt to model the interphase slip velocity is discussed.

Handbook of Atomization and Sprays

Handbook of Atomization and Sprays PDF Author: Nasser Ashgriz
Publisher: Springer Science & Business Media
ISBN: 1441972641
Category : Technology & Engineering
Languages : en
Pages : 922

Get Book Here

Book Description
Atomization and sprays are used in a wide range of industries: mechanical, chemical, aerospace, and civil engineering; material science and metallurgy; food; pharmaceutical, forestry, environmental protection; medicine; agriculture; meteorology and others. Some specific applications are spray combustion in furnaces, gas turbines and rockets, spray drying and cooling, air conditioning, powdered metallurgy, spray painting and coating, inhalation therapy, and many others. The Handbook of Atomization and Sprays will bring together the fundamental and applied material from all fields into one comprehensive source. Subject areas included in the reference are droplets, theoretical models and numerical simulations, phase Doppler particle analysis, applications, devices and more.

Flow and Combustion in Reciprocating Engines

Flow and Combustion in Reciprocating Engines PDF Author: C. Arcoumanis
Publisher: Springer Science & Business Media
ISBN: 354068901X
Category : Science
Languages : en
Pages : 427

Get Book Here

Book Description
Optimization of combustion processes in automotive engines is a key factor in reducing fuel consumption. This book, written by eminent university and industry researchers, investigates and describes flow and combustion processes in diesel and gasoline engines.

Mixture Formation in Internal Combustion Engines

Mixture Formation in Internal Combustion Engines PDF Author: Carsten Baumgarten
Publisher: Springer Science & Business Media
ISBN: 3540308369
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.

Automotive Spark-Ignited Direct-Injection Gasoline Engines

Automotive Spark-Ignited Direct-Injection Gasoline Engines PDF Author: F. Zhao
Publisher: Elsevier
ISBN: 008055279X
Category : Technology & Engineering
Languages : en
Pages : 129

Get Book Here

Book Description
The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.

Fundamentals of Multiphase Flow

Fundamentals of Multiphase Flow PDF Author: Christopher E. Brennen
Publisher: Cambridge University Press
ISBN: 9780521848046
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
Publisher Description

High Performance Computing in Science and Engineering ' 18

High Performance Computing in Science and Engineering ' 18 PDF Author: Wolfgang E. Nagel
Publisher: Springer
ISBN: 3030133257
Category : Computers
Languages : en
Pages : 514

Get Book Here

Book Description
This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2018. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

Metastable Liquids

Metastable Liquids PDF Author: Vladimir Pavlovich Skripov
Publisher:
ISBN:
Category : High temperatures
Languages : en
Pages : 292

Get Book Here

Book Description


Multiphase Flow Handbook, Second Edition

Multiphase Flow Handbook, Second Edition PDF Author: Efstathios Michaelides
Publisher: CRC Press
ISBN: 1315354624
Category : Science
Languages : en
Pages : 1559

Get Book Here

Book Description
The Multiphase Flow Handbook, Second Edition is a thoroughly updated and reorganized revision of the late Clayton Crowe’s work, and provides a detailed look at the basic concepts and the wide range of applications in this important area of thermal/fluids engineering. Revised by the new editors, Efstathios E. (Stathis) Michaelides and John D. Schwarzkopf, the new Second Edition begins with two chapters covering fundamental concepts and methods that pertain to all the types and applications of multiphase flow. The remaining chapters cover the applications and engineering systems that are relevant to all the types of multiphase flow and heat transfer. The twenty-one chapters and several sections of the book include the basic science as well as the contemporary engineering and technological applications of multiphase flow in a comprehensive way that is easy to follow and be understood. The editors created a common set of nomenclature that is used throughout the book, allowing readers to easily compare fundamental theory with currently developing concepts and applications. With contributed chapters from sixty-two leading experts around the world, the Multiphase Flow Handbook, Second Edition is an essential reference for all researchers, academics and engineers working with complex thermal and fluid systems.

Handbook of Diesel Engines

Handbook of Diesel Engines PDF Author: Klaus Mollenhauer
Publisher: Springer Science & Business Media
ISBN: 3540890831
Category : Technology & Engineering
Languages : en
Pages : 632

Get Book Here

Book Description
This machine is destined to completely revolutionize cylinder diesel engine up through large low speed t- engine engineering and replace everything that exists. stroke diesel engines. An appendix lists the most (From Rudolf Diesel’s letter of October 2, 1892 to the important standards and regulations for diesel engines. publisher Julius Springer. ) Further development of diesel engines as economiz- Although Diesel’s stated goal has never been fully ing, clean, powerful and convenient drives for road and achievable of course, the diesel engine indeed revolu- nonroad use has proceeded quite dynamically in the tionized drive systems. This handbook documents the last twenty years in particular. In light of limited oil current state of diesel engine engineering and technol- reserves and the discussion of predicted climate ogy. The impetus to publish a Handbook of Diesel change, development work continues to concentrate Engines grew out of ruminations on Rudolf Diesel’s on reducing fuel consumption and utilizing alternative transformation of his idea for a rational heat engine fuels while keeping exhaust as clean as possible as well into reality more than 100 years ago. Once the patent as further increasing diesel engine power density and was filed in 1892 and work on his engine commenced enhancing operating performance.