Computational Arithmetic Geometry

Computational Arithmetic Geometry PDF Author: Kristin Estella Lauter
Publisher: American Mathematical Soc.
ISBN: 0821843206
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
With the recent increase in available computing power, new computations are possible in many areas of arithmetic geometry. To name just a few examples, Cremona's tables of elliptic curves now go up to conductor 120,000 instead of just conductor 1,000, tables of Hilbert class fields are known for discriminant up to at least 5,000, and special values of Hilbert and Siegel modular forms can be calculated to extremely high precision. In many cases, these experimental capabilities haveled to new observations and ideas for progress in the field. They have also led to natural algorithmic questions on the feasibility and efficiency of many computations, especially for the purpose of applications in cryptography. The AMS Special Session on Computational Arithmetic Geometry, held onApril 29-30, 2006, in San Francisco, CA, gathered together many of the people currently working on the computational and algorithmic aspects of arithmetic geometry. This volume contains research articles related to talks given at the session. The majority of articles are devoted to various aspects of arithmetic geometry, mainly with a computational approach.

Computational Arithmetic Geometry

Computational Arithmetic Geometry PDF Author: Kristin Estella Lauter
Publisher: American Mathematical Soc.
ISBN: 0821843206
Category : Mathematics
Languages : en
Pages : 146

Get Book Here

Book Description
With the recent increase in available computing power, new computations are possible in many areas of arithmetic geometry. To name just a few examples, Cremona's tables of elliptic curves now go up to conductor 120,000 instead of just conductor 1,000, tables of Hilbert class fields are known for discriminant up to at least 5,000, and special values of Hilbert and Siegel modular forms can be calculated to extremely high precision. In many cases, these experimental capabilities haveled to new observations and ideas for progress in the field. They have also led to natural algorithmic questions on the feasibility and efficiency of many computations, especially for the purpose of applications in cryptography. The AMS Special Session on Computational Arithmetic Geometry, held onApril 29-30, 2006, in San Francisco, CA, gathered together many of the people currently working on the computational and algorithmic aspects of arithmetic geometry. This volume contains research articles related to talks given at the session. The majority of articles are devoted to various aspects of arithmetic geometry, mainly with a computational approach.

Arithmetic Geometry, Number Theory, and Computation

Arithmetic Geometry, Number Theory, and Computation PDF Author: Jennifer S. Balakrishnan
Publisher: Springer Nature
ISBN: 3030809145
Category : Mathematics
Languages : en
Pages : 587

Get Book Here

Book Description
This volume contains articles related to the work of the Simons Collaboration “Arithmetic Geometry, Number Theory, and Computation.” The papers present mathematical results and algorithms necessary for the development of large-scale databases like the L-functions and Modular Forms Database (LMFDB). The authors aim to develop systematic tools for analyzing Diophantine properties of curves, surfaces, and abelian varieties over number fields and finite fields. The articles also explore examples important for future research. Specific topics include● algebraic varieties over finite fields● the Chabauty-Coleman method● modular forms● rational points on curves of small genus● S-unit equations and integral points.

Arithmetic Geometry over Global Function Fields

Arithmetic Geometry over Global Function Fields PDF Author: Gebhard Böckle
Publisher: Birkhäuser
ISBN: 9783034808521
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings.

Arithmetic Geometry And Number Theory

Arithmetic Geometry And Number Theory PDF Author: Lin Weng
Publisher: World Scientific
ISBN: 9814477931
Category : Mathematics
Languages : en
Pages : 411

Get Book Here

Book Description
Mathematics is very much a part of our culture; and this invaluable collection serves the purpose of developing the branches involved, popularizing the existing theories and guiding our future explorations.More precisely, the goal is to bring the reader to the frontier of current developments in arithmetic geometry and number theory through the works of Deninger-Werner in vector bundles on curves over p-adic fields; of Jiang on local gamma factors in automorphic representations; of Weng on Deligne pairings and Takhtajan-Zograf metrics; of Yoshida on CM-periods; of Yu on transcendence of special values of zetas over finite fields. In addition, the lecture notes presented by Weng at the University of Toronto from October to November 2005 explain basic ideas and the reasons (not just the language and conclusions) behind Langlands' fundamental, yet notably difficult, works on the Eisenstein series and spectral decompositions.And finally, a brand new concept by Weng called the Geometric Arithmetic program that uses algebraic and/or analytic methods, based on geometric considerations, to develop the promising and yet to be cultivated land of global arithmetic that includes non-abelian Class Field Theory, Riemann Hypothesis and non-abelian Zeta and L Functions, etc.

Computing in Algebraic Geometry

Computing in Algebraic Geometry PDF Author: Wolfram Decker
Publisher: Springer Science & Business Media
ISBN: 3540289933
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
This book provides a quick access to computational tools for algebraic geometry, the mathematical discipline which handles solution sets of polynomial equations. Originating from a number of intense one week schools taught by the authors, the text is designed so as to provide a step by step introduction which enables the reader to get started with his own computational experiments right away. The authors present the basic concepts and ideas in a compact way.

Computational Geometry

Computational Geometry PDF Author: Franco P. Preparata
Publisher: Springer Science & Business Media
ISBN: 1461210984
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
From the reviews: "This book offers a coherent treatment, at the graduate textbook level, of the field that has come to be known in the last decade or so as computational geometry. ... ... The book is well organized and lucidly written; a timely contribution by two founders of the field. It clearly demonstrates that computational geometry in the plane is now a fairly well-understood branch of computer science and mathematics. It also points the way to the solution of the more challenging problems in dimensions higher than two." #Mathematical Reviews#1 "... This remarkable book is a comprehensive and systematic study on research results obtained especially in the last ten years. The very clear presentation concentrates on basic ideas, fundamental combinatorial structures, and crucial algorithmic techniques. The plenty of results is clever organized following these guidelines and within the framework of some detailed case studies. A large number of figures and examples also aid the understanding of the material. Therefore, it can be highly recommended as an early graduate text but it should prove also to be essential to researchers and professionals in applied fields of computer-aided design, computer graphics, and robotics." #Biometrical Journal#2

Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry PDF Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354

Get Book Here

Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Computational Commutative Algebra 1

Computational Commutative Algebra 1 PDF Author: Martin Kreuzer
Publisher: Springer Science & Business Media
ISBN: 354067733X
Category : Mathematics
Languages : en
Pages : 325

Get Book Here

Book Description
This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.

Machine Intelligence and Pattern Recognition

Machine Intelligence and Pattern Recognition PDF Author: Godfried T. Toussaint
Publisher: Elsevier
ISBN: 1483257118
Category : Mathematics
Languages : en
Pages : 472

Get Book Here

Book Description
Machine Intelligence and Pattern Recognition, Volume 2: Computational Geometry focuses on the operations, processes, methodologies, and approaches involved in computational geometry, including algorithms, polygons, convex hulls, and bucketing techniques. The selection first ponders on optimal parallel algorithms for selection, sorting, and computing convex hulls, simple on-line algorithms for convex polygons, and geometric algorithms that use the furthest-point Voronoi diagram. Discussions focus on algorithms that use the furthest-point Voronoi diagram, intersection of a convex polygon and a halfplane, point insertion, convex hulls and polygons and their representations, and parallel algorithm for selection and computing convex hulls. The text then examines optimal convex decompositions, expected time analysis of algorithms in computational geometry, and practical use of bucketing techniques in computational geometry. The book takes a look at minimum decompositions of polygonal objects, framework for computational morphology, display of visible edges of a set of convex polygons, and implementation study of two algorithms for the minimum spanning circle problem. Topics include rolling algorithm, shape of point sets, and decomposition of rectilinear and simple polygons and polygons with holes. The selection is a valuable source of data for researchers interested in computational geometry.

Computational Algebraic Geometry

Computational Algebraic Geometry PDF Author: Hal Schenck
Publisher: Cambridge University Press
ISBN: 9780521536509
Category : Computers
Languages : en
Pages : 212

Get Book Here

Book Description
The interplay between algebra and geometry is a beautiful (and fun!) area of mathematical investigation. Advances in computing and algorithms make it possible to tackle many classical problems in a down-to-earth and concrete fashion. This opens wonderful new vistas and allows us to pose, study and solve problems that were previously out of reach. Suitable for graduate students, the objective of this 2003 book is to bring advanced algebra to life with lots of examples. The first chapters provide an introduction to commutative algebra and connections to geometry. The rest of the book focuses on three active areas of contemporary algebra: Homological Algebra (the snake lemma, long exact sequence inhomology, functors and derived functors (Tor and Ext), and double complexes); Algebraic Combinatorics and Algebraic Topology (simplicial complexes and simplicial homology, Stanley-Reisner rings, upper bound theorem and polytopes); and Algebraic Geometry (points and curves in projective space, Riemann-Roch, Cech cohomology, regularity).