Computational Architectures Integrating Neural and Symbolic Processes

Computational Architectures Integrating Neural and Symbolic Processes PDF Author: Ron Sun
Publisher: Springer
ISBN: 0585295999
Category : Computers
Languages : en
Pages : 490

Get Book Here

Book Description
Computational Architectures Integrating Neural and Symbolic Processes: A Perspective on the State of the Art focuses on a currently emerging body of research. With the reemergence of neural networks in the 1980s with their emphasis on overcoming some of the limitations of symbolic AI, there is clearly a need to support some form of high-level symbolic processing in connectionist networks. As argued by many researchers, on both the symbolic AI and connectionist sides, many cognitive tasks, e.g. language understanding and common sense reasoning, seem to require high-level symbolic capabilities. How these capabilities are realized in connectionist networks is a difficult question and it constitutes the focus of this book. Computational Architectures Integrating Neural and Symbolic Processes addresses the underlying architectural aspects of the integration of neural and symbolic processes. In order to provide a basis for a deeper understanding of existing divergent approaches and provide insight for further developments in this field, this book presents: (1) an examination of specific architectures (grouped together according to their approaches), their strengths and weaknesses, why they work, and what they predict, and (2) a critique/comparison of these approaches. Computational Architectures Integrating Neural and Symbolic Processes is of interest to researchers, graduate students, and interested laymen, in areas such as cognitive science, artificial intelligence, computer science, cognitive psychology, and neurocomputing, in keeping up-to-date with the newest research trends. It is a comprehensive, in-depth introduction to this new emerging field.

Computational Architectures Integrating Neural and Symbolic Processes

Computational Architectures Integrating Neural and Symbolic Processes PDF Author: Ron Sun
Publisher: Springer
ISBN: 0585295999
Category : Computers
Languages : en
Pages : 490

Get Book Here

Book Description
Computational Architectures Integrating Neural and Symbolic Processes: A Perspective on the State of the Art focuses on a currently emerging body of research. With the reemergence of neural networks in the 1980s with their emphasis on overcoming some of the limitations of symbolic AI, there is clearly a need to support some form of high-level symbolic processing in connectionist networks. As argued by many researchers, on both the symbolic AI and connectionist sides, many cognitive tasks, e.g. language understanding and common sense reasoning, seem to require high-level symbolic capabilities. How these capabilities are realized in connectionist networks is a difficult question and it constitutes the focus of this book. Computational Architectures Integrating Neural and Symbolic Processes addresses the underlying architectural aspects of the integration of neural and symbolic processes. In order to provide a basis for a deeper understanding of existing divergent approaches and provide insight for further developments in this field, this book presents: (1) an examination of specific architectures (grouped together according to their approaches), their strengths and weaknesses, why they work, and what they predict, and (2) a critique/comparison of these approaches. Computational Architectures Integrating Neural and Symbolic Processes is of interest to researchers, graduate students, and interested laymen, in areas such as cognitive science, artificial intelligence, computer science, cognitive psychology, and neurocomputing, in keeping up-to-date with the newest research trends. It is a comprehensive, in-depth introduction to this new emerging field.

Hybrid Neural Systems

Hybrid Neural Systems PDF Author: Stefan Wermter
Publisher: Springer
ISBN: 3540464174
Category : Medical
Languages : en
Pages : 411

Get Book Here

Book Description
Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the state of the art of research and development in hybrid neural systems. The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches.

Scenario Analysis in Risk Management

Scenario Analysis in Risk Management PDF Author: Bertrand K. Hassani
Publisher: Springer
ISBN: 3319250566
Category : Business & Economics
Languages : en
Pages : 171

Get Book Here

Book Description
This book focuses on identifying and explaining the key determinants of scenario analysis in the context of operational risk, stress testing and systemic risk, as well as management and planning. Each chapter presents alternative solutions to perform reliable scenario analysis. The author also provides technical notes and describes applications and key characteristics for each of the solutions. In addition, the book includes a section to help practitioners interpret the results and adjust them to real-life management activities. Methodologies, including those derived from consensus strategies, extreme value theory, Bayesian networks, Neural networks, Fault Trees, frequentist statistics and data mining are introduced in such a way as to make them understandable to readers without a quantitative background. Particular emphasis is given to the added value of the implementation of these methodologies.

Handbook of Geospatial Artificial Intelligence

Handbook of Geospatial Artificial Intelligence PDF Author: Song Gao
Publisher: CRC Press
ISBN: 1003814921
Category : Technology & Engineering
Languages : en
Pages : 469

Get Book Here

Book Description
This comprehensive handbook covers Geospatial Artificial Intelligence (GeoAI), which is the integration of geospatial studies and AI machine (deep) learning and knowledge graph technologies. It explains key fundamental concepts, methods, models, and technologies of GeoAI, and discusses the recent advances, research tools, and applications that range from environmental observation and social sensing to natural disaster responses. As the first single volume on this fast-emerging domain, Handbook of Geospatial Artificial Intelligence is an excellent resource for educators, students, researchers, and practitioners utilizing GeoAI in fields such as information science, environment and natural resources, geosciences, and geography. Features Provides systematic introductions and discussions of GeoAI theory, methods, technologies, applications, and future perspectives Covers a wide range of GeoAI applications and case studies in practice Offers supplementary materials such as data, programming code, tools, and case studies Discusses the recent developments of GeoAI methods and tools Includes contributions written by top experts in cutting-edge GeoAI topics This book is intended for upper-level undergraduate and graduate students from different disciplines and those taking GIS courses in geography or computer sciences as well as software engineers, geospatial industry engineers, GIS professionals in non-governmental organizations, and federal/state agencies who use GIS and want to learn more about GeoAI advances and applications.

Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society

Proceedings of the Eighteenth Annual Conference of the Cognitive Science Society PDF Author: Garrison W. Cottrell
Publisher: Routledge
ISBN: 1317729463
Category : Psychology
Languages : en
Pages : 908

Get Book Here

Book Description
This volume features the complete text of all regular papers, posters, and summaries of symposia presented at the 18th annual meeting of the Cognitive Science Society. Papers have been loosely grouped by topic, and an author index is provided in the back. In hopes of facilitating searches of this work, an electronic index on the Internet's World Wide Web is provided. Titles, authors, and summaries of all the papers published here have been placed in an online database which may be freely searched by anyone. You can reach the Web site at: http://www.cse.ucsd.edu/events/cogsci96/proceedings. You may view the table of contents for this volume on the LEA Web site at: http://www.erlbaum.com.

Encyclopedia of Information Systems and Technology - Two Volume Set

Encyclopedia of Information Systems and Technology - Two Volume Set PDF Author: Phillip A. Laplante
Publisher: CRC Press
ISBN: 1000031748
Category : Computers
Languages : en
Pages : 1307

Get Book Here

Book Description
Spanning the multi-disciplinary scope of information technology, the Encyclopedia of Information Systems and Technology draws together comprehensive coverage of the inter-related aspects of information systems and technology. The topics covered in this encyclopedia encompass internationally recognized bodies of knowledge, including those of The IT BOK, the Chartered Information Technology Professionals Program, the International IT Professional Practice Program (British Computer Society), the Core Body of Knowledge for IT Professionals (Australian Computer Society), the International Computer Driving License Foundation (European Computer Driving License Foundation), and the Guide to the Software Engineering Body of Knowledge. Using the universally recognized definitions of IT and information systems from these recognized bodies of knowledge, the encyclopedia brings together the information that students, practicing professionals, researchers, and academicians need to keep their knowledge up to date. Also Available Online This Taylor & Francis encyclopedia is also available through online subscription, offering a variety of extra benefits for researchers, students, and librarians, including: Citation tracking and alerts Active reference linking Saved searches and marked lists HTML and PDF format options Contact Taylor and Francis for more information or to inquire about subscription options and print/online combination packages. US: (Tel) 1.888.318.2367; (E-mail) [email protected] International: (Tel) +44 (0) 20 7017 6062; (E-mail) [email protected]

Knowledge-based Neurocomputing

Knowledge-based Neurocomputing PDF Author: Ian Cloete
Publisher: MIT Press
ISBN: 9780262032742
Category : Computers
Languages : en
Pages : 512

Get Book Here

Book Description
Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network.The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.ContributorsC. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada

Learning to Learn

Learning to Learn PDF Author: Sebastian Thrun
Publisher: Springer Science & Business Media
ISBN: 1461555299
Category : Computers
Languages : en
Pages : 346

Get Book Here

Book Description
Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.

Introduction to Neural and Cognitive Modeling

Introduction to Neural and Cognitive Modeling PDF Author: Daniel S. Levine
Publisher: Psychology Press
ISBN: 1135692246
Category : Psychology
Languages : en
Pages : 573

Get Book Here

Book Description
This thoroughly, thoughtfully revised edition of a very successful textbook makes the principles and the details of neural network modeling accessible to cognitive scientists of all varieties as well as to others interested in these models. Research since the publication of the first edition has been systematically incorporated into a framework of proven pedagogical value. Features of the second edition include: * A new section on spatiotemporal pattern processing * Coverage of ARTMAP networks (the supervised version of adaptive resonance networks) and recurrent back-propagation networks * A vastly expanded section on models of specific brain areas, such as the cerebellum, hippocampus, basal ganglia, and visual and motor cortex * Up-to-date coverage of applications of neural networks in areas such as combinatorial optimization and knowledge representation As in the first edition, the text includes extensive introductions to neuroscience and to differential and difference equations as appendices for students without the requisite background in these areas. As graphically revealed in the flowchart in the front of the book, the text begins with simpler processes and builds up to more complex multilevel functional systems. For more information visit the author's personal Web site at www.uta.edu/psychology/faculty/levine/

Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering

Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering PDF Author: Nikola K. Kasabov
Publisher: Marcel Alencar
ISBN: 0262112124
Category : Artificial intelligence
Languages : en
Pages : 581

Get Book Here

Book Description
Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.