Author: Frank Eeckman
Publisher: Springer Science & Business Media
ISBN: 9780792393498
Category : Computers
Languages : en
Pages : 566
Book Description
Computational neuroscience is best defined by its focus on understanding the nervous systems as a computational device rather than by a particular experimental technique. Accordinlgy, while the majority of the papers in this book describe analysis and modeling efforts, other papers describe the results of new biological experiments explicitly placed in the context of computational issues. The distribution of subjects in Computation and Neural Systems reflects the current state of the field. In addition to the scientific results presented here, numerous papers also describe the ongoing technical developments that are critical for the continued growth of computational neuroscience. Computation and Neural Systems includes papers presented at the First Annual Computation and Neural Systems meeting held in San Francisco, CA, July 26--29, 1992.
Computation and Neural Systems
Neural Engineering
Author: Chris Eliasmith
Publisher: MIT Press
ISBN: 9780262550604
Category : Computers
Languages : en
Pages : 384
Book Description
A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.
Publisher: MIT Press
ISBN: 9780262550604
Category : Computers
Languages : en
Pages : 384
Book Description
A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.
Introduction To The Theory Of Neural Computation
Author: John A. Hertz
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 350
Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Publisher: CRC Press
ISBN: 0429968213
Category : Science
Languages : en
Pages : 350
Book Description
Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.
Handbook of Neural Computation
Author: Pijush Samui
Publisher: Academic Press
ISBN: 0128113197
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Publisher: Academic Press
ISBN: 0128113197
Category : Technology & Engineering
Languages : en
Pages : 660
Book Description
Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods
Computation and Neural Systems
Author: Frank H. Eeckman
Publisher: Springer Science & Business Media
ISBN: 146153254X
Category : Computers
Languages : en
Pages : 490
Book Description
Computational neuroscience is best defined by its focus on understanding the nervous systems as a computational device rather than by a particular experimental technique. Accordinlgy, while the majority of the papers in this book describe analysis and modeling efforts, other papers describe the results of new biological experiments explicitly placed in the context of computational issues. The distribution of subjects in Computation and Neural Systems reflects the current state of the field. In addition to the scientific results presented here, numerous papers also describe the ongoing technical developments that are critical for the continued growth of computational neuroscience. Computation and Neural Systems includes papers presented at the First Annual Computation and Neural Systems meeting held in San Francisco, CA, July 26--29, 1992.
Publisher: Springer Science & Business Media
ISBN: 146153254X
Category : Computers
Languages : en
Pages : 490
Book Description
Computational neuroscience is best defined by its focus on understanding the nervous systems as a computational device rather than by a particular experimental technique. Accordinlgy, while the majority of the papers in this book describe analysis and modeling efforts, other papers describe the results of new biological experiments explicitly placed in the context of computational issues. The distribution of subjects in Computation and Neural Systems reflects the current state of the field. In addition to the scientific results presented here, numerous papers also describe the ongoing technical developments that are critical for the continued growth of computational neuroscience. Computation and Neural Systems includes papers presented at the First Annual Computation and Neural Systems meeting held in San Francisco, CA, July 26--29, 1992.
Analog VLSI and Neural Systems
Author: Carver Mead
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 416
Book Description
A self-contained text, suitable for a broad audience. Presents basic concepts in electronics, transistor physics, and neurobiology for readers without backgrounds in those areas. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Computers
Languages : en
Pages : 416
Book Description
A self-contained text, suitable for a broad audience. Presents basic concepts in electronics, transistor physics, and neurobiology for readers without backgrounds in those areas. Annotation copyrighted by Book News, Inc., Portland, OR
Biophysics of Computation
Author: Christof Koch
Publisher: Oxford University Press
ISBN: 0195181999
Category : Medical
Languages : en
Pages : 587
Book Description
Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.
Publisher: Oxford University Press
ISBN: 0195181999
Category : Medical
Languages : en
Pages : 587
Book Description
Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.
An Information-Theoretic Approach to Neural Computing
Author: Gustavo Deco
Publisher: Springer Science & Business Media
ISBN: 1461240166
Category : Computers
Languages : en
Pages : 265
Book Description
A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.
Publisher: Springer Science & Business Media
ISBN: 1461240166
Category : Computers
Languages : en
Pages : 265
Book Description
A detailed formulation of neural networks from the information-theoretic viewpoint. The authors show how this perspective provides new insights into the design theory of neural networks. In particular they demonstrate how these methods may be applied to the topics of supervised and unsupervised learning, including feature extraction, linear and non-linear independent component analysis, and Boltzmann machines. Readers are assumed to have a basic understanding of neural networks, but all the relevant concepts from information theory are carefully introduced and explained. Consequently, readers from varied scientific disciplines, notably cognitive scientists, engineers, physicists, statisticians, and computer scientists, will find this an extremely valuable introduction to this topic.
Feynman Lectures On Computation
Author: Richard P. Feynman
Publisher: CRC Press
ISBN: 0429980078
Category : Science
Languages : en
Pages : 252
Book Description
When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.
Publisher: CRC Press
ISBN: 0429980078
Category : Science
Languages : en
Pages : 252
Book Description
When, in 1984?86, Richard P. Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a ?Feynmanesque? overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.
Theoretical Neuroscience
Author: Peter Dayan
Publisher: MIT Press
ISBN: 0262541858
Category : Medical
Languages : en
Pages : 477
Book Description
Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.
Publisher: MIT Press
ISBN: 0262541858
Category : Medical
Languages : en
Pages : 477
Book Description
Theoretical neuroscience provides a quantitative basis for describing what nervous systems do, determining how they function, and uncovering the general principles by which they operate. This text introduces the basic mathematical and computational methods of theoretical neuroscience and presents applications in a variety of areas including vision, sensory-motor integration, development, learning, and memory. The book is divided into three parts. Part I discusses the relationship between sensory stimuli and neural responses, focusing on the representation of information by the spiking activity of neurons. Part II discusses the modeling of neurons and neural circuits on the basis of cellular and synaptic biophysics. Part III analyzes the role of plasticity in development and learning. An appendix covers the mathematical methods used, and exercises are available on the book's Web site.