Composition and Big Data

Composition and Big Data PDF Author: Amanda Licastro
Publisher: University of Pittsburgh Press
ISBN: 0822988194
Category : Language Arts & Disciplines
Languages : en
Pages : 279

Get Book Here

Book Description
In a data-driven world, anything can be data. As the techniques and scale of data analysis advance, the need for a response from rhetoric and composition grows ever more pronounced. It is increasingly possible to examine thousands of documents and peer-review comments, labor-hours, and citation networks in composition courses and beyond. Composition and Big Data brings together a range of scholars, teachers, and administrators already working with big-data methods and datasets to kickstart a collective reckoning with the role that algorithmic and computational approaches can, or should, play in research and teaching in the field. Their work takes place in various contexts, including programmatic assessment, first-year pedagogy, stylistics, and learning transfer across the curriculum. From ethical reflections to database design, from corpus linguistics to quantitative autoethnography, these chapters implement and interpret the drive toward data in diverse ways.

Composition and Big Data

Composition and Big Data PDF Author: Amanda Licastro
Publisher: University of Pittsburgh Press
ISBN: 0822988194
Category : Language Arts & Disciplines
Languages : en
Pages : 279

Get Book Here

Book Description
In a data-driven world, anything can be data. As the techniques and scale of data analysis advance, the need for a response from rhetoric and composition grows ever more pronounced. It is increasingly possible to examine thousands of documents and peer-review comments, labor-hours, and citation networks in composition courses and beyond. Composition and Big Data brings together a range of scholars, teachers, and administrators already working with big-data methods and datasets to kickstart a collective reckoning with the role that algorithmic and computational approaches can, or should, play in research and teaching in the field. Their work takes place in various contexts, including programmatic assessment, first-year pedagogy, stylistics, and learning transfer across the curriculum. From ethical reflections to database design, from corpus linguistics to quantitative autoethnography, these chapters implement and interpret the drive toward data in diverse ways.

Big Data Concepts, Theories, and Applications

Big Data Concepts, Theories, and Applications PDF Author: Shui Yu
Publisher: Springer
ISBN: 3319277634
Category : Computers
Languages : en
Pages : 440

Get Book Here

Book Description
This book covers three major parts of Big Data: concepts, theories and applications. Written by world-renowned leaders in Big Data, this book explores the problems, possible solutions and directions for Big Data in research and practice. It also focuses on high level concepts such as definitions of Big Data from different angles; surveys in research and applications; and existing tools, mechanisms, and systems in practice. Each chapter is independent from the other chapters, allowing users to read any chapter directly. After examining the practical side of Big Data, this book presents theoretical perspectives. The theoretical research ranges from Big Data representation, modeling and topology to distribution and dimension reducing. Chapters also investigate the many disciplines that involve Big Data, such as statistics, data mining, machine learning, networking, algorithms, security and differential geometry. The last section of this book introduces Big Data applications from different communities, such as business, engineering and science. Big Data Concepts, Theories and Applications is designed as a reference for researchers and advanced level students in computer science, electrical engineering and mathematics. Practitioners who focus on information systems, big data, data mining, business analysis and other related fields will also find this material valuable.

Big Data

Big Data PDF Author: James Warren
Publisher: Simon and Schuster
ISBN: 1638351104
Category : Computers
Languages : en
Pages : 498

Get Book Here

Book Description
Summary Big Data teaches you to build big data systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy-to-understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to implement them in practice, and how to deploy and operate them once they're built. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Book Web-scale applications like social networks, real-time analytics, or e-commerce sites deal with a lot of data, whose volume and velocity exceed the limits of traditional database systems. These applications require architectures built around clusters of machines to store and process data of any size, or speed. Fortunately, scale and simplicity are not mutually exclusive. Big Data teaches you to build big data systems using an architecture designed specifically to capture and analyze web-scale data. This book presents the Lambda Architecture, a scalable, easy-to-understand approach that can be built and run by a small team. You'll explore the theory of big data systems and how to implement them in practice. In addition to discovering a general framework for processing big data, you'll learn specific technologies like Hadoop, Storm, and NoSQL databases. This book requires no previous exposure to large-scale data analysis or NoSQL tools. Familiarity with traditional databases is helpful. What's Inside Introduction to big data systems Real-time processing of web-scale data Tools like Hadoop, Cassandra, and Storm Extensions to traditional database skills About the Authors Nathan Marz is the creator of Apache Storm and the originator of the Lambda Architecture for big data systems. James Warren is an analytics architect with a background in machine learning and scientific computing. Table of Contents A new paradigm for Big Data PART 1 BATCH LAYER Data model for Big Data Data model for Big Data: Illustration Data storage on the batch layer Data storage on the batch layer: Illustration Batch layer Batch layer: Illustration An example batch layer: Architecture and algorithms An example batch layer: Implementation PART 2 SERVING LAYER Serving layer Serving layer: Illustration PART 3 SPEED LAYER Realtime views Realtime views: Illustration Queuing and stream processing Queuing and stream processing: Illustration Micro-batch stream processing Micro-batch stream processing: Illustration Lambda Architecture in depth

Reinventing Capitalism in the Age of Big Data

Reinventing Capitalism in the Age of Big Data PDF Author: Viktor Mayer-Schönberger
Publisher: Basic Books
ISBN: 0465093698
Category : Business & Economics
Languages : en
Pages : 239

Get Book Here

Book Description
From the New York Times bestselling author of Big Data, a prediction for how data will revolutionize the market economy and make cash, banks, and big companies obsolete In modern history, the story of capitalism has been a story of firms and financiers. That's all going to change thanks to the Big Data revolution. As Viktor Mayer-Schörger, bestselling author of Big Data, and Thomas Ramge, who writes for The Economist, show, data is replacing money as the driver of market behavior. Big finance and big companies will be replaced by small groups and individual actors who make markets instead of making things: think Uber instead of Ford, or Airbnb instead of Hyatt. This is the dawn of the era of data capitalism. Will it be an age of prosperity or of calamity? This book provides the indispensable roadmap for securing a better future.

Uncertain Archives

Uncertain Archives PDF Author: Nanna Bonde Thylstrup
Publisher: MIT Press
ISBN: 0262539888
Category : Computers
Languages : en
Pages : 638

Get Book Here

Book Description
Scholars from a range of disciplines interrogate terms relevant to critical studies of big data, from abuse and aggregate to visualization and vulnerability. This pathbreaking work offers an interdisciplinary perspective on big data, interrogating key terms. Scholars from a range of disciplines interrogate concepts relevant to critical studies of big data--arranged glossary style, from from abuse and aggregate to visualization and vulnerability--both challenging conventional usage of such often-used terms as prediction and objectivity and introducing such unfamiliar ones as overfitting and copynorm. The contributors include both leading researchers, including N. Katherine Hayles, Johanna Drucker and Lisa Gitelman, and such emerging agenda-setting scholars as Safiya Noble, Sarah T. Roberts and Nicole Starosielski.

The Talent Equation: Big Data Lessons for Navigating the Skills Gap and Building a Competitive Workforce

The Talent Equation: Big Data Lessons for Navigating the Skills Gap and Building a Competitive Workforce PDF Author: Matt Ferguson
Publisher: McGraw Hill Professional
ISBN: 0071827129
Category : Business & Economics
Languages : en
Pages : 257

Get Book Here

Book Description
Is your HR department prepared to flip the big data switch? At every stage of the employee life cycle, a data-driven approach to HR can help companies make smarter decisions about their most important asset: their people. This title shows you how to navigate hiring climate and drive your business forward.

Big Data and Smart Service Systems

Big Data and Smart Service Systems PDF Author: Xiwei Liu
Publisher: Academic Press
ISBN: 0128120401
Category : Computers
Languages : en
Pages : 233

Get Book Here

Book Description
Big Data and Smart Service Systems presents the theories and applications regarding Big Data and smart service systems, data acquisition, smart cities, business decision-making support, and smart service design. The rapid development of computer and Internet technologies has led the world to the era of Big Data. Big Data technologies are widely used, which has brought unprecedented impacts on traditional industries and lifestyle. More and more governments, business sectors, and institutions begin to realize data is becoming the most valuable asset and its analysis is becoming the core competitiveness. - Describes the frontier of service science and motivates a discussion among readers on a multidisciplinary subject areas that explores the design of smart service - Illustrates the concepts, framework, and application of big data and smart service systems - Demonstrates the crucial role of smart service to promote the transformation of the regional and global economy

Security, Privacy, and Forensics Issues in Big Data

Security, Privacy, and Forensics Issues in Big Data PDF Author: Joshi, Ramesh C.
Publisher: IGI Global
ISBN: 1522597441
Category : Computers
Languages : en
Pages : 474

Get Book Here

Book Description
With the proliferation of devices connected to the internet and connected to each other, the volume of data collected, stored, and processed is increasing every day, which brings new challenges in terms of information security. As big data expands with the help of public clouds, traditional security solutions tailored to private computing infrastructures and confined to a well-defined security perimeter, such as firewalls and demilitarized zones (DMZs), are no longer effective. New security functions are required to work over the heterogenous composition of diverse hardware, operating systems, and network domains. Security, Privacy, and Forensics Issues in Big Data is an essential research book that examines recent advancements in big data and the impact that these advancements have on information security and privacy measures needed for these networks. Highlighting a range of topics including cryptography, data analytics, and threat detection, this is an excellent reference source for students, software developers and engineers, security analysts, IT consultants, academicians, researchers, and professionals.

Big Data

Big Data PDF Author: Viktor Mayer-Schönberger
Publisher: Houghton Mifflin Harcourt
ISBN: 0544002695
Category : Business & Economics
Languages : en
Pages : 257

Get Book Here

Book Description
A exploration of the latest trend in technology and the impact it will have on the economy, science, and society at large.

Deep Learning Techniques and Optimization Strategies in Big Data Analytics

Deep Learning Techniques and Optimization Strategies in Big Data Analytics PDF Author: Thomas, J. Joshua
Publisher: IGI Global
ISBN: 1799811948
Category : Computers
Languages : en
Pages : 355

Get Book Here

Book Description
Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there’s a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.