Author: Panos M Pardalos
Publisher: World Scientific
ISBN: 9814504084
Category : Mathematics
Languages : en
Pages : 538
Book Description
Computational complexity, originated from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty.The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable.The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions.This book is a collection of articles on recent complexity developments in numerical optimization. The topics covered include complexity of approximation algorithms, new polynomial time algorithms for convex quadratic minimization, interior point algorithms, complexity issues regarding test generation of NP-hard problems, complexity of scheduling problems, min-max, fractional combinatorial optimization, fixed point computations and network flow problems.The collection of articles provide a broad spectrum of the direction in which research is going and help to elucidate the nature of computational complexity in optimization. The book will be a valuable source of information to faculty, students and researchers in numerical optimization and related areas.
Complexity In Numerical Optimization
Author: Panos M Pardalos
Publisher: World Scientific
ISBN: 9814504084
Category : Mathematics
Languages : en
Pages : 538
Book Description
Computational complexity, originated from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty.The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable.The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions.This book is a collection of articles on recent complexity developments in numerical optimization. The topics covered include complexity of approximation algorithms, new polynomial time algorithms for convex quadratic minimization, interior point algorithms, complexity issues regarding test generation of NP-hard problems, complexity of scheduling problems, min-max, fractional combinatorial optimization, fixed point computations and network flow problems.The collection of articles provide a broad spectrum of the direction in which research is going and help to elucidate the nature of computational complexity in optimization. The book will be a valuable source of information to faculty, students and researchers in numerical optimization and related areas.
Publisher: World Scientific
ISBN: 9814504084
Category : Mathematics
Languages : en
Pages : 538
Book Description
Computational complexity, originated from the interactions between computer science and numerical optimization, is one of the major theories that have revolutionized the approach to solving optimization problems and to analyzing their intrinsic difficulty.The main focus of complexity is the study of whether existing algorithms are efficient for the solution of problems, and which problems are likely to be tractable.The quest for developing efficient algorithms leads also to elegant general approaches for solving optimization problems, and reveals surprising connections among problems and their solutions.This book is a collection of articles on recent complexity developments in numerical optimization. The topics covered include complexity of approximation algorithms, new polynomial time algorithms for convex quadratic minimization, interior point algorithms, complexity issues regarding test generation of NP-hard problems, complexity of scheduling problems, min-max, fractional combinatorial optimization, fixed point computations and network flow problems.The collection of articles provide a broad spectrum of the direction in which research is going and help to elucidate the nature of computational complexity in optimization. The book will be a valuable source of information to faculty, students and researchers in numerical optimization and related areas.
Numerical Optimization with Computational Errors
Author: Alexander J. Zaslavski
Publisher: Springer
ISBN: 3319309218
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.
Publisher: Springer
ISBN: 3319309218
Category : Mathematics
Languages : en
Pages : 308
Book Description
This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.
Numerical Optimization
Author: Joseph-Frédéric Bonnans
Publisher: Springer Science & Business Media
ISBN: 3662050781
Category : Mathematics
Languages : en
Pages : 421
Book Description
This book starts with illustrations of the ubiquitous character of optimization, and describes numerical algorithms in a tutorial way. It covers fundamental algorithms as well as more specialized and advanced topics for unconstrained and constrained problems. This new edition contains computational exercises in the form of case studies which help understanding optimization methods beyond their theoretical description when coming to actual implementation.
Publisher: Springer Science & Business Media
ISBN: 3662050781
Category : Mathematics
Languages : en
Pages : 421
Book Description
This book starts with illustrations of the ubiquitous character of optimization, and describes numerical algorithms in a tutorial way. It covers fundamental algorithms as well as more specialized and advanced topics for unconstrained and constrained problems. This new edition contains computational exercises in the form of case studies which help understanding optimization methods beyond their theoretical description when coming to actual implementation.
Complexity and Approximation
Author: Giorgio Ausiello
Publisher: Springer Science & Business Media
ISBN: 3642584128
Category : Computers
Languages : en
Pages : 536
Book Description
This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.
Publisher: Springer Science & Business Media
ISBN: 3642584128
Category : Computers
Languages : en
Pages : 536
Book Description
This book documents the state of the art in combinatorial optimization, presenting approximate solutions of virtually all relevant classes of NP-hard optimization problems. The wealth of problems, algorithms, results, and techniques make it an indispensible source of reference for professionals. The text smoothly integrates numerous illustrations, examples, and exercises.
Numerical Methods and Optimization
Author: Sergiy Butenko
Publisher: CRC Press
ISBN: 1466577789
Category : Business & Economics
Languages : en
Pages : 408
Book Description
For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro
Publisher: CRC Press
ISBN: 1466577789
Category : Business & Economics
Languages : en
Pages : 408
Book Description
For students in industrial and systems engineering (ISE) and operations research (OR) to understand optimization at an advanced level, they must first grasp the analysis of algorithms, computational complexity, and other concepts and modern developments in numerical methods. Satisfying this prerequisite, Numerical Methods and Optimization: An Intro
Approximation and Optimization
Author: Ioannis C. Demetriou
Publisher: Springer
ISBN: 3030127672
Category : Mathematics
Languages : en
Pages : 244
Book Description
This book focuses on the development of approximation-related algorithms and their relevant applications. Individual contributions are written by leading experts and reflect emerging directions and connections in data approximation and optimization. Chapters discuss state of the art topics with highly relevant applications throughout science, engineering, technology and social sciences. Academics, researchers, data science practitioners, business analysts, social sciences investigators and graduate students will find the number of illustrations, applications, and examples provided useful. This volume is based on the conference Approximation and Optimization: Algorithms, Complexity, and Applications, which was held in the National and Kapodistrian University of Athens, Greece, June 29–30, 2017. The mix of survey and research content includes topics in approximations to discrete noisy data; binary sequences; design of networks and energy systems; fuzzy control; large scale optimization; noisy data; data-dependent approximation; networked control systems; machine learning ; optimal design; no free lunch theorem; non-linearly constrained optimization; spectroscopy.
Publisher: Springer
ISBN: 3030127672
Category : Mathematics
Languages : en
Pages : 244
Book Description
This book focuses on the development of approximation-related algorithms and their relevant applications. Individual contributions are written by leading experts and reflect emerging directions and connections in data approximation and optimization. Chapters discuss state of the art topics with highly relevant applications throughout science, engineering, technology and social sciences. Academics, researchers, data science practitioners, business analysts, social sciences investigators and graduate students will find the number of illustrations, applications, and examples provided useful. This volume is based on the conference Approximation and Optimization: Algorithms, Complexity, and Applications, which was held in the National and Kapodistrian University of Athens, Greece, June 29–30, 2017. The mix of survey and research content includes topics in approximations to discrete noisy data; binary sequences; design of networks and energy systems; fuzzy control; large scale optimization; noisy data; data-dependent approximation; networked control systems; machine learning ; optimal design; no free lunch theorem; non-linearly constrained optimization; spectroscopy.
Convex Optimization
Author: Sébastien Bubeck
Publisher: Foundations and Trends (R) in Machine Learning
ISBN: 9781601988607
Category : Convex domains
Languages : en
Pages : 142
Book Description
This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
Publisher: Foundations and Trends (R) in Machine Learning
ISBN: 9781601988607
Category : Convex domains
Languages : en
Pages : 142
Book Description
This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. It begins with the fundamental theory of black-box optimization and proceeds to guide the reader through recent advances in structural optimization and stochastic optimization. The presentation of black-box optimization, strongly influenced by the seminal book by Nesterov, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. Special attention is also given to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging), and discussing their relevance in machine learning. The text provides a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization it discusses stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. It also briefly touches upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
Computational Complexity
Author: Sanjeev Arora
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609
Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Publisher: Cambridge University Press
ISBN: 0521424267
Category : Computers
Languages : en
Pages : 609
Book Description
New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.
Handbook of Global Optimization
Author: Panos M. Pardalos
Publisher: Springer Science & Business Media
ISBN: 1475753624
Category : Mathematics
Languages : en
Pages : 571
Book Description
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.
Publisher: Springer Science & Business Media
ISBN: 1475753624
Category : Mathematics
Languages : en
Pages : 571
Book Description
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.
Numerical Optimization
Author: Jorge Nocedal
Publisher: Springer Science & Business Media
ISBN: 0387400656
Category : Mathematics
Languages : en
Pages : 686
Book Description
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.
Publisher: Springer Science & Business Media
ISBN: 0387400656
Category : Mathematics
Languages : en
Pages : 686
Book Description
Optimization is an important tool used in decision science and for the analysis of physical systems used in engineering. One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.