Author: Andrew J. Sommese
Publisher: Springer
ISBN: 3540469346
Category : Mathematics
Languages : en
Pages : 325
Book Description
Algebraic Geometry
Author: Andrew J. Sommese
Publisher: Springer
ISBN: 3540469346
Category : Mathematics
Languages : en
Pages : 325
Book Description
Publisher: Springer
ISBN: 3540469346
Category : Mathematics
Languages : en
Pages : 325
Book Description
Geometry and Complex Variables
Author: S. Coen
Publisher: Routledge
ISBN: 1351445278
Category : Mathematics
Languages : en
Pages : 522
Book Description
This reference presents the proceedings of an international meeting on the occasion of theUniversity of Bologna's ninth centennial-highlighting the latest developments in the field ofgeometry and complex variables and new results in the areas of algebraic geometry,differential geometry, and analytic functions of one or several complex variables.Building upon the rich tradition of the University of Bologna's great mathematics teachers, thisvolume contains new studies on the history of mathematics, including the algebraic geometrywork of F. Enriques, B. Levi, and B. Segre ... complex function theory ideas of L. Fantappie,B. Levi, S. Pincherle, and G. Vitali ... series theory and logarithm theory contributions of P.Mengoli and S. Pincherle ... and much more. Additionally, the book lists all the University ofBologna's mathematics professors-from 1860 to 1940-with precise indications of eachcourse year by year.Including survey papers on combinatorics, complex analysis, and complex algebraic geometryinspired by Bologna's mathematicians and current advances, Geometry and ComplexVariables illustrates the classic works and ideas in the field and their influence on today'sresearch.
Publisher: Routledge
ISBN: 1351445278
Category : Mathematics
Languages : en
Pages : 522
Book Description
This reference presents the proceedings of an international meeting on the occasion of theUniversity of Bologna's ninth centennial-highlighting the latest developments in the field ofgeometry and complex variables and new results in the areas of algebraic geometry,differential geometry, and analytic functions of one or several complex variables.Building upon the rich tradition of the University of Bologna's great mathematics teachers, thisvolume contains new studies on the history of mathematics, including the algebraic geometrywork of F. Enriques, B. Levi, and B. Segre ... complex function theory ideas of L. Fantappie,B. Levi, S. Pincherle, and G. Vitali ... series theory and logarithm theory contributions of P.Mengoli and S. Pincherle ... and much more. Additionally, the book lists all the University ofBologna's mathematics professors-from 1860 to 1940-with precise indications of eachcourse year by year.Including survey papers on combinatorics, complex analysis, and complex algebraic geometryinspired by Bologna's mathematicians and current advances, Geometry and ComplexVariables illustrates the classic works and ideas in the field and their influence on today'sresearch.
Algebraic Geometry and Number Theory
Author: victor ginzburg
Publisher: Springer Science & Business Media
ISBN: 0817645322
Category : Mathematics
Languages : en
Pages : 656
Book Description
This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.
Publisher: Springer Science & Business Media
ISBN: 0817645322
Category : Mathematics
Languages : en
Pages : 656
Book Description
This book represents a collection of invited papers by outstanding mathematicians in algebra, algebraic geometry, and number theory dedicated to Vladimir Drinfeld. Original research articles reflect the range of Drinfeld's work, and his profound contributions to the Langlands program, quantum groups, and mathematical physics are paid particular attention. These ten original articles by prominent mathematicians, dedicated to Drinfeld on the occasion of his 50th birthday, broadly reflect the range of Drinfeld's own interests in algebra, algebraic geometry, and number theory.
Fundamental Algebraic Geometry
Author: Barbara Fantechi
Publisher: American Mathematical Soc.
ISBN: 0821842455
Category : Mathematics
Languages : en
Pages : 354
Book Description
Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 0821842455
Category : Mathematics
Languages : en
Pages : 354
Book Description
Presents an outline of Alexander Grothendieck's theories. This book discusses four main themes - descent theory, Hilbert and Quot schemes, the formal existence theorem, and the Picard scheme. It is suitable for those working in algebraic geometry.
Complex Analysis and Geometry
Author: Vincenzo Ancona
Publisher: CRC Press
ISBN: 9780824796723
Category : Mathematics
Languages : en
Pages : 580
Book Description
Based on a conference held in Trento, Italy, and sponsored by the Centro Internazionale per la Ricera Matematica, this work presents advances in several complex variables and related topics such as transcendental algebraic geometry, infinite dimensional supermanifolds, and foliations. It covers the unfoldings of singularities, Levi foliations, Cauchy-Reimann manifolds, infinite dimensional supermanifolds, conformal structures, algebraic groups, instantons and more.
Publisher: CRC Press
ISBN: 9780824796723
Category : Mathematics
Languages : en
Pages : 580
Book Description
Based on a conference held in Trento, Italy, and sponsored by the Centro Internazionale per la Ricera Matematica, this work presents advances in several complex variables and related topics such as transcendental algebraic geometry, infinite dimensional supermanifolds, and foliations. It covers the unfoldings of singularities, Levi foliations, Cauchy-Reimann manifolds, infinite dimensional supermanifolds, conformal structures, algebraic groups, instantons and more.
Complex Projective Geometry
Author: G. Ellingsrud
Publisher: Cambridge University Press
ISBN: 0521433525
Category : Mathematics
Languages : en
Pages : 354
Book Description
A volume of papers describing new methods in algebraic geometry.
Publisher: Cambridge University Press
ISBN: 0521433525
Category : Mathematics
Languages : en
Pages : 354
Book Description
A volume of papers describing new methods in algebraic geometry.
Simplicial Homotopy Theory
Author: Paul G. Goerss
Publisher: Birkhäuser
ISBN: 3034887078
Category : Mathematics
Languages : en
Pages : 520
Book Description
Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.
Publisher: Birkhäuser
ISBN: 3034887078
Category : Mathematics
Languages : en
Pages : 520
Book Description
Since the beginning of the modern era of algebraic topology, simplicial methods have been used systematically and effectively for both computation and basic theory. With the development of Quillen's concept of a closed model category and, in particular, a simplicial model category, this collection of methods has become the primary way to describe non-abelian homological algebra and to address homotopy-theoretical issues in a variety of fields, including algebraic K-theory. This book supplies a modern exposition of these ideas, emphasizing model category theoretical techniques. Discussed here are the homotopy theory of simplicial sets, and other basic topics such as simplicial groups, Postnikov towers, and bisimplicial sets. The more advanced material includes homotopy limits and colimits, localization with respect to a map and with respect to a homology theory, cosimplicial spaces, and homotopy coherence. Interspersed throughout are many results and ideas well-known to experts, but uncollected in the literature. Intended for second-year graduate students and beyond, this book introduces many of the basic tools of modern homotopy theory. An extensive background in topology is not assumed.
Handbook of Algebra
Author:
Publisher: Elsevier
ISBN: 0080532950
Category : Mathematics
Languages : en
Pages : 936
Book Description
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.
Publisher: Elsevier
ISBN: 0080532950
Category : Mathematics
Languages : en
Pages : 936
Book Description
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.
Complex Analysis and Spectral Theory
Author: V. P. Havin
Publisher: Springer
ISBN: 3540386262
Category : Mathematics
Languages : en
Pages : 491
Book Description
Publisher: Springer
ISBN: 3540386262
Category : Mathematics
Languages : en
Pages : 491
Book Description
Coding Theory
Author: J. H. van Lint
Publisher: Springer Science & Business Media
ISBN: 3540063633
Category : Mathematics
Languages : en
Pages : 146
Book Description
These lecture notes are the contents of a two-term course given by me during the 1970-1971 academic year as Morgan Ward visiting professor at the California Institute of Technology. The students who took the course were mathematics seniors and graduate students. Therefore a thorough knowledge of algebra. (a. o. linear algebra, theory of finite fields, characters of abelian groups) and also probability theory were assumed. After introducing coding theory and linear codes these notes concern topics mostly from algebraic coding theory. The practical side of the subject, e. g. circuitry, is not included. Some topics which one would like to include 1n a course for students of mathematics such as bounds on the information rate of codes and many connections between combinatorial mathematics and coding theory could not be treated due to lack of time. For an extension of the course into a third term these two topics would have been chosen. Although the material for this course came from many sources there are three which contributed heavily and which were used as suggested reading material for the students. These are W. W. Peterson's Error-Correcting Codes «(15]), E. R. Berlekamp's Algebraic Coding Theory «(5]) and several of the AFCRL-reports by E. F. Assmus, H. F. Mattson and R. Turyn ([2], (3), [4] a. o. ). For several fruitful discussions I would like to thank R. J. McEliece.
Publisher: Springer Science & Business Media
ISBN: 3540063633
Category : Mathematics
Languages : en
Pages : 146
Book Description
These lecture notes are the contents of a two-term course given by me during the 1970-1971 academic year as Morgan Ward visiting professor at the California Institute of Technology. The students who took the course were mathematics seniors and graduate students. Therefore a thorough knowledge of algebra. (a. o. linear algebra, theory of finite fields, characters of abelian groups) and also probability theory were assumed. After introducing coding theory and linear codes these notes concern topics mostly from algebraic coding theory. The practical side of the subject, e. g. circuitry, is not included. Some topics which one would like to include 1n a course for students of mathematics such as bounds on the information rate of codes and many connections between combinatorial mathematics and coding theory could not be treated due to lack of time. For an extension of the course into a third term these two topics would have been chosen. Although the material for this course came from many sources there are three which contributed heavily and which were used as suggested reading material for the students. These are W. W. Peterson's Error-Correcting Codes «(15]), E. R. Berlekamp's Algebraic Coding Theory «(5]) and several of the AFCRL-reports by E. F. Assmus, H. F. Mattson and R. Turyn ([2], (3), [4] a. o. ). For several fruitful discussions I would like to thank R. J. McEliece.