Author: R. Keith Sawyer
Publisher: Cambridge University Press
ISBN: 9780521844642
Category : Philosophy
Languages : en
Pages : 296
Book Description
This book argues that societies are complex dynamical systems that can be understood through the concept of emergence.
Social Emergence
Author: R. Keith Sawyer
Publisher: Cambridge University Press
ISBN: 9780521844642
Category : Philosophy
Languages : en
Pages : 296
Book Description
This book argues that societies are complex dynamical systems that can be understood through the concept of emergence.
Publisher: Cambridge University Press
ISBN: 9780521844642
Category : Philosophy
Languages : en
Pages : 296
Book Description
This book argues that societies are complex dynamical systems that can be understood through the concept of emergence.
Complex Systems and Society
Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 1461472423
Category : Mathematics
Languages : en
Pages : 102
Book Description
This work aims to foster the interdisciplinary dialogue between mathematicians and socio-economic scientists. Interaction among scholars and practitioners traditionally coming from different research areas is necessary more than ever in order to better understand many real-world problems we face today. On the one hand, mathematicians need economists and social scientists to better address the methodologies they design in a more realistic way; on the other hand, economists and social scientists need to be aware of sound mathematical modelling tools in order to understand and, ultimately, solve the complex problems they encounter in their research. With this goal in mind, this work is designed to take into account a multidisciplinary approach that will encourage the transfer of knowledge, ideas, and methodology from one discipline to the other. In particular, the work has three main themes: Demystifying and unravelling complex systems; Introducing models of individual behaviours in the social and economic sciences; Modelling socio-economic sciences as complex living systems. Specific tools examined in the work include a recently developed modelling approach using stochastic game theory within the framework of statistical mechanics and progressing up to modeling Darwinian evolution. Special attention is also devoted to social network theory as a fundamental instrument for the understanding of socio-economic systems.
Publisher: Springer Science & Business Media
ISBN: 1461472423
Category : Mathematics
Languages : en
Pages : 102
Book Description
This work aims to foster the interdisciplinary dialogue between mathematicians and socio-economic scientists. Interaction among scholars and practitioners traditionally coming from different research areas is necessary more than ever in order to better understand many real-world problems we face today. On the one hand, mathematicians need economists and social scientists to better address the methodologies they design in a more realistic way; on the other hand, economists and social scientists need to be aware of sound mathematical modelling tools in order to understand and, ultimately, solve the complex problems they encounter in their research. With this goal in mind, this work is designed to take into account a multidisciplinary approach that will encourage the transfer of knowledge, ideas, and methodology from one discipline to the other. In particular, the work has three main themes: Demystifying and unravelling complex systems; Introducing models of individual behaviours in the social and economic sciences; Modelling socio-economic sciences as complex living systems. Specific tools examined in the work include a recently developed modelling approach using stochastic game theory within the framework of statistical mechanics and progressing up to modeling Darwinian evolution. Special attention is also devoted to social network theory as a fundamental instrument for the understanding of socio-economic systems.
Why Society is a Complex Matter
Author: Philip Ball
Publisher: Springer
ISBN: 9783642289996
Category : Science
Languages : en
Pages : 0
Book Description
Society is complicated. But this book argues that this does not place it beyond the reach of a science that can help to explain and perhaps even to predict social behaviour. As a system made up of many interacting agents – people, groups, institutions and governments, as well as physical and technological structures such as roads and computer networks – society can be regarded as a complex system. In recent years, scientists have made great progress in understanding how such complex systems operate, ranging from animal populations to earthquakes and weather. These systems show behaviours that cannot be predicted or intuited by focusing on the individual components, but which emerge spontaneously as a consequence of their interactions: they are said to be ‘self-organized’. Attempts to direct or manage such emergent properties generally reveal that ‘top-down’ approaches, which try to dictate a particular outcome, are ineffectual, and that what is needed instead is a ‘bottom-up’ approach that aims to guide self-organization towards desirable states. This book shows how some of these ideas from the science of complexity can be applied to the study and management of social phenomena, including traffic flow, economic markets, opinion formation and the growth and structure of cities. Building on these successes, the book argues that the complex-systems view of the social sciences has now matured sufficiently for it to be possible, desirable and perhaps essential to attempt a grander objective: to integrate these efforts into a unified scheme for studying, understanding and ultimately predicting what happens in the world we have made. Such a scheme would require the mobilization and collaboration of many different research communities, and would allow society and its interactions with the physical environment to be explored through realistic models and large-scale data collection and analysis. It should enable us to find new and effective solutions to major global problems such as conflict, disease, financial instability, environmental despoliation and poverty, while avoiding unintended policy consequences. It could give us the foresight to anticipate and ameliorate crises, and to begin tackling some of the most intractable problems of the twenty-first century.
Publisher: Springer
ISBN: 9783642289996
Category : Science
Languages : en
Pages : 0
Book Description
Society is complicated. But this book argues that this does not place it beyond the reach of a science that can help to explain and perhaps even to predict social behaviour. As a system made up of many interacting agents – people, groups, institutions and governments, as well as physical and technological structures such as roads and computer networks – society can be regarded as a complex system. In recent years, scientists have made great progress in understanding how such complex systems operate, ranging from animal populations to earthquakes and weather. These systems show behaviours that cannot be predicted or intuited by focusing on the individual components, but which emerge spontaneously as a consequence of their interactions: they are said to be ‘self-organized’. Attempts to direct or manage such emergent properties generally reveal that ‘top-down’ approaches, which try to dictate a particular outcome, are ineffectual, and that what is needed instead is a ‘bottom-up’ approach that aims to guide self-organization towards desirable states. This book shows how some of these ideas from the science of complexity can be applied to the study and management of social phenomena, including traffic flow, economic markets, opinion formation and the growth and structure of cities. Building on these successes, the book argues that the complex-systems view of the social sciences has now matured sufficiently for it to be possible, desirable and perhaps essential to attempt a grander objective: to integrate these efforts into a unified scheme for studying, understanding and ultimately predicting what happens in the world we have made. Such a scheme would require the mobilization and collaboration of many different research communities, and would allow society and its interactions with the physical environment to be explored through realistic models and large-scale data collection and analysis. It should enable us to find new and effective solutions to major global problems such as conflict, disease, financial instability, environmental despoliation and poverty, while avoiding unintended policy consequences. It could give us the foresight to anticipate and ameliorate crises, and to begin tackling some of the most intractable problems of the twenty-first century.
A Crude Look at the Whole
Author: John H. Miller
Publisher: Basic Books
ISBN: 0465073867
Category : Science
Languages : en
Pages : 268
Book Description
A top expert explains why a social and economic understanding of complex systems will help society to anticipate and confront our biggest challenges Imagine trying to understand a stained glass window by breaking it into pieces and examining it one shard at a time. While you could probably learn a lot about each piece, you would have no idea about what the entire picture looks like. This is reductionism -- the idea that to understand the world we only need to study its pieces -- and it is how most social scientists approach their work. In A Crude Look at the Whole, social scientist and economist John H. Miller shows why we need to start looking at whole pictures. For one thing, whether we are talking about stock markets, computer networks, or biological organisms, individual parts only make sense when we remember that they are part of larger wholes. And perhaps more importantly, those wholes can take on behaviors that are strikingly different from that of their pieces. Miller, a leading expert in the computational study of complex adaptive systems, reveals astounding global patterns linking the organization of otherwise radically different structures: It might seem crude, but a beehive's temperature control system can help predict market fluctuations and a mammal's heartbeat can help us understand the "heartbeat" of a city and adapt urban planning accordingly. From enduring racial segregation to sudden stock market disasters, once we start drawing links between complex systems, we can start solving what otherwise might be totally intractable problems. Thanks to this revolutionary perspective, we can finally transcend the limits of reductionism and discover crucial new ideas. Scientifically founded and beautifully written, A Crude Look at the Whole is a powerful exploration of the challenges that we face as a society. As it reveals, taking the crude look might be the only way to truly see.
Publisher: Basic Books
ISBN: 0465073867
Category : Science
Languages : en
Pages : 268
Book Description
A top expert explains why a social and economic understanding of complex systems will help society to anticipate and confront our biggest challenges Imagine trying to understand a stained glass window by breaking it into pieces and examining it one shard at a time. While you could probably learn a lot about each piece, you would have no idea about what the entire picture looks like. This is reductionism -- the idea that to understand the world we only need to study its pieces -- and it is how most social scientists approach their work. In A Crude Look at the Whole, social scientist and economist John H. Miller shows why we need to start looking at whole pictures. For one thing, whether we are talking about stock markets, computer networks, or biological organisms, individual parts only make sense when we remember that they are part of larger wholes. And perhaps more importantly, those wholes can take on behaviors that are strikingly different from that of their pieces. Miller, a leading expert in the computational study of complex adaptive systems, reveals astounding global patterns linking the organization of otherwise radically different structures: It might seem crude, but a beehive's temperature control system can help predict market fluctuations and a mammal's heartbeat can help us understand the "heartbeat" of a city and adapt urban planning accordingly. From enduring racial segregation to sudden stock market disasters, once we start drawing links between complex systems, we can start solving what otherwise might be totally intractable problems. Thanks to this revolutionary perspective, we can finally transcend the limits of reductionism and discover crucial new ideas. Scientifically founded and beautifully written, A Crude Look at the Whole is a powerful exploration of the challenges that we face as a society. As it reveals, taking the crude look might be the only way to truly see.
Strategy for Managing Complex Systems
Author: Fredmund Malik
Publisher: Campus Verlag
ISBN: 3593505398
Category : Business & Economics
Languages : en
Pages : 565
Book Description
"Malik demonstrates that management and management theory have strong foundations in systems science, and most specifically in a certain type of cybernetics of truly complex systems, of organismic, self-organizing, and evolving systems. This book provides the basics on how to create robust, functional, and sustainably viable systems. One of the reasons why it has become a classic on management cybernetics, now in its 11th edition, is that the strategies and heuristic principles of complexity management are still relevant - now more than ever."--Back cover.
Publisher: Campus Verlag
ISBN: 3593505398
Category : Business & Economics
Languages : en
Pages : 565
Book Description
"Malik demonstrates that management and management theory have strong foundations in systems science, and most specifically in a certain type of cybernetics of truly complex systems, of organismic, self-organizing, and evolving systems. This book provides the basics on how to create robust, functional, and sustainably viable systems. One of the reasons why it has become a classic on management cybernetics, now in its 11th edition, is that the strategies and heuristic principles of complexity management are still relevant - now more than ever."--Back cover.
A Complex Systems Perspective of Communication from Cells to Societies
Author: Anamaria Berea
Publisher: BoD – Books on Demand
ISBN: 1789857791
Category : Language Arts & Disciplines
Languages : en
Pages : 100
Book Description
This book is an interdisciplinary effort to understand the evolution of communication from cells to societies, both in living organisms and in non-living ones, such as designed or emergent systems from socio-technological innovations (i.e., digital communication, institutional communication). It aims to provide better understanding of the universal versus contextual patterns of communication that we can potentially classify and identify if we look deeper into the history and evolution of this phenomenon at large. Novel research from a variety of disciplines, such as information theory, biology, linguistics, culture and social science that take a complex perspective is being explored, for an integrated understanding of what communication is at a fundamental level.
Publisher: BoD – Books on Demand
ISBN: 1789857791
Category : Language Arts & Disciplines
Languages : en
Pages : 100
Book Description
This book is an interdisciplinary effort to understand the evolution of communication from cells to societies, both in living organisms and in non-living ones, such as designed or emergent systems from socio-technological innovations (i.e., digital communication, institutional communication). It aims to provide better understanding of the universal versus contextual patterns of communication that we can potentially classify and identify if we look deeper into the history and evolution of this phenomenon at large. Novel research from a variety of disciplines, such as information theory, biology, linguistics, culture and social science that take a complex perspective is being explored, for an integrated understanding of what communication is at a fundamental level.
Viability and Resilience of Complex Systems
Author: Guillaume Deffuant
Publisher: Springer Science & Business Media
ISBN: 3642204228
Category : Social Science
Languages : en
Pages : 227
Book Description
One common characteristics of a complex system is its ability to withstand major disturbances and the capacity to rebuild itself. Understanding how such systems demonstrate resilience by absorbing or recovering from major external perturbations requires both quantitative foundations and a multidisciplinary view on the topic. This book demonstrates how new methods can be used to identify the actions favouring the recovery from perturbations. Examples discussed include bacterial biofilms resisting detachment, grassland savannahs recovering from fire, the dynamics of language competition and Internet social networking sites overcoming vandalism. The reader is taken through an introduction to the idea of resilience and viability and shown the mathematical basis of the techniques used to analyse systems. The idea of individual or agent-based modelling of complex systems is introduced and related to analytically tractable approximations of such models. A set of case studies illustrates the use of the techniques in real applications, and the final section describes how one can use new and elaborate software tools for carrying out the necessary calculations. The book is intended for a general scientific audience of readers from the natural and social sciences, yet requires some mathematics to gain a full understanding of the more theoretical chapters. It is an essential point of reference for those interested in the practical application of the concepts of resilience and viability
Publisher: Springer Science & Business Media
ISBN: 3642204228
Category : Social Science
Languages : en
Pages : 227
Book Description
One common characteristics of a complex system is its ability to withstand major disturbances and the capacity to rebuild itself. Understanding how such systems demonstrate resilience by absorbing or recovering from major external perturbations requires both quantitative foundations and a multidisciplinary view on the topic. This book demonstrates how new methods can be used to identify the actions favouring the recovery from perturbations. Examples discussed include bacterial biofilms resisting detachment, grassland savannahs recovering from fire, the dynamics of language competition and Internet social networking sites overcoming vandalism. The reader is taken through an introduction to the idea of resilience and viability and shown the mathematical basis of the techniques used to analyse systems. The idea of individual or agent-based modelling of complex systems is introduced and related to analytically tractable approximations of such models. A set of case studies illustrates the use of the techniques in real applications, and the final section describes how one can use new and elaborate software tools for carrying out the necessary calculations. The book is intended for a general scientific audience of readers from the natural and social sciences, yet requires some mathematics to gain a full understanding of the more theoretical chapters. It is an essential point of reference for those interested in the practical application of the concepts of resilience and viability
Society-- a Complex Adaptive System
Author: Walter Frederick Buckley
Publisher: Taylor & Francis
ISBN: 9789057005374
Category : Social Science
Languages : en
Pages : 330
Book Description
First Published in 1998. Routledge is an imprint of Taylor & Francis, an informa company.
Publisher: Taylor & Francis
ISBN: 9789057005374
Category : Social Science
Languages : en
Pages : 330
Book Description
First Published in 1998. Routledge is an imprint of Taylor & Francis, an informa company.
Energy in Nature and Society
Author: Vaclav Smil
Publisher: MIT Press
ISBN: 0262195658
Category : Bioenergetics
Languages : en
Pages : 495
Book Description
A comprehensive, systematic, analytically unified, and interdisciplinary treatment of energy in nature and society, from solar radiation and photosynthesis to our fossil fueled civilization and its environmental consequences.
Publisher: MIT Press
ISBN: 0262195658
Category : Bioenergetics
Languages : en
Pages : 495
Book Description
A comprehensive, systematic, analytically unified, and interdisciplinary treatment of energy in nature and society, from solar radiation and photosynthesis to our fossil fueled civilization and its environmental consequences.
Complex Systems Science in Biomedicine
Author: Thomas Deisboeck
Publisher: Springer Science & Business Media
ISBN: 0387335323
Category : Medical
Languages : en
Pages : 857
Book Description
Complex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure. The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science. Key Topics Include: • Historic Perspectives of General Systems Thinking • Fundamental Methods and Techniques for Studying Complex Dynamical Systems • Applications from Molecular Networks to Disease Processes • Enabling Technologies for Exploration of Systems in the Life Sciences Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of this rapidly emerging field. About the Editors: Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging. J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.
Publisher: Springer Science & Business Media
ISBN: 0387335323
Category : Medical
Languages : en
Pages : 857
Book Description
Complex Systems Science in Biomedicine Thomas S. Deisboeck and J. Yasha Kresh Complex Systems Science in Biomedicine covers the emerging field of systems science involving the application of physics, mathematics, engineering and computational methods and techniques to the study of biomedicine including nonlinear dynamics at the molecular, cellular, multi-cellular tissue, and organismic level. With all chapters helmed by leading scientists in the field, Complex Systems Science in Biomedicine's goal is to offer its audience a timely compendium of the ongoing research directed to the understanding of biological processes as whole systems instead of as isolated component parts. In Parts I & II, Complex Systems Science in Biomedicine provides a general systems thinking perspective and presents some of the fundamental theoretical underpinnings of this rapidly emerging field. Part III then follows with a multi-scaled approach, spanning from the molecular to macroscopic level, exemplified by studying such diverse areas as molecular networks and developmental processes, the immune and nervous systems, the heart, cancer and multi-organ failure. The volume concludes with Part IV that addresses methods and techniques driven in design and development by this new understanding of biomedical science. Key Topics Include: • Historic Perspectives of General Systems Thinking • Fundamental Methods and Techniques for Studying Complex Dynamical Systems • Applications from Molecular Networks to Disease Processes • Enabling Technologies for Exploration of Systems in the Life Sciences Complex Systems Science in Biomedicine is essential reading for experimental, theoretical, and interdisciplinary scientists working in the biomedical research field interested in a comprehensive overview of this rapidly emerging field. About the Editors: Thomas S. Deisboeck is currently Assistant Professor of Radiology at Massachusetts General Hospital and Harvard Medical School in Boston. An expert in interdisciplinary cancer modeling, Dr. Deisboeck is Director of the Complex Biosystems Modeling Laboratory which is part of the Harvard-MIT Martinos Center for Biomedical Imaging. J. Yasha Kresh is currently Professor of Cardiothoracic Surgery and Research Director, Professor of Medicine and Director of Cardiovascular Biophysics at the Drexel University College of Medicine. An expert in dynamical systems, he holds appointments in the School of Biomedical Engineering and Health Systems, Dept. of Mechanical Engineering and Molecular Pathobiology Program. Prof. Kresh is Fellow of the American College of Cardiology, American Heart Association, Biomedical Engineering Society, American Institute for Medical and Biological Engineering.