Author: Giuseppe Mangioni
Publisher: Springer
ISBN: 3319161121
Category : Technology & Engineering
Languages : en
Pages : 236
Book Description
Elucidating the spatial and temporal dynamics of how things connect has become one of the most important areas of research in the 21st century. Network science now pervades nearly every science domain, resulting in new discoveries in a host of dynamic social and natural systems, including: how neurons connect and communicate in the brain, how information percolates within and among social networks, the evolution of science research through co-authorship networks, the spread of epidemics and many other complex phenomena. Over the past decade, advances in computational power have put the tools of network analysis in the hands of increasing numbers of scientists, enabling more explorations of our world than ever before possible. Information science, social sciences, systems biology, ecosystems ecology, neuroscience and physics all benefit from this movement, which combines graph theory with data sciences to develop and validate theories about the world around us. This book brings together cutting-edge research from the network science field and includes diverse and interdisciplinary topics such as: modeling the structure of urban systems, behavior in social networks, education and learning, data network architecture, structure and dynamics of organizations, crime and terrorism, as well as network topology, modularity and community detection.
Complex Networks VI
Complex Networks & Their Applications VI
Author: Chantal Cherifi
Publisher: Springer
ISBN: 331972150X
Category : Technology & Engineering
Languages : en
Pages : 1290
Book Description
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the VI International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2017), which took place in Lyon on November 29 – December 1, 2017. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and ecological networks and technological networks.
Publisher: Springer
ISBN: 331972150X
Category : Technology & Engineering
Languages : en
Pages : 1290
Book Description
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the VI International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2017), which took place in Lyon on November 29 – December 1, 2017. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and ecological networks and technological networks.
Dynamical Processes on Complex Networks
Author: Alain Barrat
Publisher: Cambridge University Press
ISBN: 9781107626256
Category : Science
Languages : en
Pages : 361
Book Description
The availability of large data sets have allowed researchers to uncover complex properties such as large scale fluctuations and heterogeneities in many networks which have lead to the breakdown of standard theoretical frameworks and models. Until recently these systems were considered as haphazard sets of points and connections. Recent advances have generated a vigorous research effort in understanding the effect of complex connectivity patterns on dynamical phenomena. For example, a vast number of everyday systems, from the brain to ecosystems, power grids and the Internet, can be represented as large complex networks. This new and recent account presents a comprehensive explanation of these effects.
Publisher: Cambridge University Press
ISBN: 9781107626256
Category : Science
Languages : en
Pages : 361
Book Description
The availability of large data sets have allowed researchers to uncover complex properties such as large scale fluctuations and heterogeneities in many networks which have lead to the breakdown of standard theoretical frameworks and models. Until recently these systems were considered as haphazard sets of points and connections. Recent advances have generated a vigorous research effort in understanding the effect of complex connectivity patterns on dynamical phenomena. For example, a vast number of everyday systems, from the brain to ecosystems, power grids and the Internet, can be represented as large complex networks. This new and recent account presents a comprehensive explanation of these effects.
Graph Theory and Complex Networks
Author: Maarten van Steen
Publisher: Maarten Van Steen
ISBN: 9789081540612
Category : Graph theory
Languages : en
Pages : 285
Book Description
This book aims to explain the basics of graph theory that are needed at an introductory level for students in computer or information sciences. To motivate students and to show that even these basic notions can be extremely useful, the book also aims to provide an introduction to the modern field of network science. Mathematics is often unnecessarily difficult for students, at times even intimidating. For this reason, explicit attention is paid in the first chapters to mathematical notations and proof techniques, emphasizing that the notations form the biggest obstacle, not the mathematical concepts themselves. This approach allows to gradually prepare students for using tools that are necessary to put graph theory to work: complex networks. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Again, everything is discussed at an elementary level, but such that in the end students indeed have the feeling that they: 1.Have learned how to read and understand the basic mathematics related to graph theory. 2.Understand how basic graph theory can be applied to optimization problems such as routing in communication networks. 3.Know a bit more about this sometimes mystical field of small worlds and random networks. There is an accompanying web site www.distributed-systems.net/gtcn from where supplementary material can be obtained, including exercises, Mathematica notebooks, data for analyzing graphs, and generators for various complex networks.
Publisher: Maarten Van Steen
ISBN: 9789081540612
Category : Graph theory
Languages : en
Pages : 285
Book Description
This book aims to explain the basics of graph theory that are needed at an introductory level for students in computer or information sciences. To motivate students and to show that even these basic notions can be extremely useful, the book also aims to provide an introduction to the modern field of network science. Mathematics is often unnecessarily difficult for students, at times even intimidating. For this reason, explicit attention is paid in the first chapters to mathematical notations and proof techniques, emphasizing that the notations form the biggest obstacle, not the mathematical concepts themselves. This approach allows to gradually prepare students for using tools that are necessary to put graph theory to work: complex networks. In the second part of the book the student learns about random networks, small worlds, the structure of the Internet and the Web, peer-to-peer systems, and social networks. Again, everything is discussed at an elementary level, but such that in the end students indeed have the feeling that they: 1.Have learned how to read and understand the basic mathematics related to graph theory. 2.Understand how basic graph theory can be applied to optimization problems such as routing in communication networks. 3.Know a bit more about this sometimes mystical field of small worlds and random networks. There is an accompanying web site www.distributed-systems.net/gtcn from where supplementary material can be obtained, including exercises, Mathematica notebooks, data for analyzing graphs, and generators for various complex networks.
Modularity and Dynamics on Complex Networks
Author: Renaud Lambiotte
Publisher: Cambridge University Press
ISBN: 1108808654
Category : Science
Languages : en
Pages : 102
Book Description
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
Publisher: Cambridge University Press
ISBN: 1108808654
Category : Science
Languages : en
Pages : 102
Book Description
Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.
Complex Network Analysis in Python
Author: Dmitry Zinoviev
Publisher: Pragmatic Bookshelf
ISBN: 1680505408
Category : Computers
Languages : en
Pages : 330
Book Description
Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.
Publisher: Pragmatic Bookshelf
ISBN: 1680505408
Category : Computers
Languages : en
Pages : 330
Book Description
Construct, analyze, and visualize networks with networkx, a Python language module. Network analysis is a powerful tool you can apply to a multitude of datasets and situations. Discover how to work with all kinds of networks, including social, product, temporal, spatial, and semantic networks. Convert almost any real-world data into a complex network--such as recommendations on co-using cosmetic products, muddy hedge fund connections, and online friendships. Analyze and visualize the network, and make business decisions based on your analysis. If you're a curious Python programmer, a data scientist, or a CNA specialist interested in mechanizing mundane tasks, you'll increase your productivity exponentially. Complex network analysis used to be done by hand or with non-programmable network analysis tools, but not anymore! You can now automate and program these tasks in Python. Complex networks are collections of connected items, words, concepts, or people. By exploring their structure and individual elements, we can learn about their meaning, evolution, and resilience. Starting with simple networks, convert real-life and synthetic network graphs into networkx data structures. Look at more sophisticated networks and learn more powerful machinery to handle centrality calculation, blockmodeling, and clique and community detection. Get familiar with presentation-quality network visualization tools, both programmable and interactive--such as Gephi, a CNA explorer. Adapt the patterns from the case studies to your problems. Explore big networks with NetworKit, a high-performance networkx substitute. Each part in the book gives you an overview of a class of networks, includes a practical study of networkx functions and techniques, and concludes with case studies from various fields, including social networking, anthropology, marketing, and sports analytics. Combine your CNA and Python programming skills to become a better network analyst, a more accomplished data scientist, and a more versatile programmer. What You Need: You will need a Python 3.x installation with the following additional modules: Pandas (>=0.18), NumPy (>=1.10), matplotlib (>=1.5), networkx (>=1.11), python-louvain (>=0.5), NetworKit (>=3.6), and generalizesimilarity. We recommend using the Anaconda distribution that comes with all these modules, except for python-louvain, NetworKit, and generalizedsimilarity, and works on all major modern operating systems.
Epidemics and Rumours in Complex Networks
Author: Moez Draief
Publisher: Cambridge University Press
ISBN: 9780521734431
Category : Mathematics
Languages : en
Pages : 0
Book Description
Information propagation through peer-to-peer systems, online social systems, wireless mobile ad hoc networks and other modern structures can be modelled as an epidemic on a network of contacts. Understanding how epidemic processes interact with network topology allows us to predict ultimate course, understand phase transitions and develop strategies to control and optimise dissemination. This book is a concise introduction for applied mathematicians and computer scientists to basic models, analytical tools and mathematical and algorithmic results. Mathematical tools introduced include coupling methods, Poisson approximation (the Stein-Chen method), concentration inequalities (Chernoff bounds and Azuma-Hoeffding inequality) and branching processes. The authors examine the small-world phenomenon, preferential attachment, as well as classical epidemics. Each chapter ends with pointers to the wider literature. An ideal accompaniment for graduate courses, this book is also for researchers (statistical physicists, biologists, social scientists) who need an efficient guide to modern approaches to epidemic modelling on networks.
Publisher: Cambridge University Press
ISBN: 9780521734431
Category : Mathematics
Languages : en
Pages : 0
Book Description
Information propagation through peer-to-peer systems, online social systems, wireless mobile ad hoc networks and other modern structures can be modelled as an epidemic on a network of contacts. Understanding how epidemic processes interact with network topology allows us to predict ultimate course, understand phase transitions and develop strategies to control and optimise dissemination. This book is a concise introduction for applied mathematicians and computer scientists to basic models, analytical tools and mathematical and algorithmic results. Mathematical tools introduced include coupling methods, Poisson approximation (the Stein-Chen method), concentration inequalities (Chernoff bounds and Azuma-Hoeffding inequality) and branching processes. The authors examine the small-world phenomenon, preferential attachment, as well as classical epidemics. Each chapter ends with pointers to the wider literature. An ideal accompaniment for graduate courses, this book is also for researchers (statistical physicists, biologists, social scientists) who need an efficient guide to modern approaches to epidemic modelling on networks.
Complex Networks
Author: Vito Latora
Publisher: Cambridge University Press
ISBN: 1107103185
Category : Computers
Languages : en
Pages : 585
Book Description
A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.
Publisher: Cambridge University Press
ISBN: 1107103185
Category : Computers
Languages : en
Pages : 585
Book Description
A comprehensive introduction to the theory and applications of complex network science, complete with real-world data sets and software tools.
Symmetry Measures on Complex Networks
Author: Angel Garrido
Publisher: MDPI
ISBN: 3038424986
Category : Mathematics
Languages : en
Pages : 509
Book Description
This book is a printed edition of the Special Issue "Symmetry Measures on Complex Networks" that was published in Symmetry
Publisher: MDPI
ISBN: 3038424986
Category : Mathematics
Languages : en
Pages : 509
Book Description
This book is a printed edition of the Special Issue "Symmetry Measures on Complex Networks" that was published in Symmetry
A First Course in Network Science
Author: Filippo Menczer
Publisher: Cambridge University Press
ISBN: 1108579612
Category : Science
Languages : en
Pages : 275
Book Description
Networks are everywhere: networks of friends, transportation networks and the Web. Neurons in our brains and proteins within our bodies form networks that determine our intelligence and survival. This modern, accessible textbook introduces the basics of network science for a wide range of job sectors from management to marketing, from biology to engineering, and from neuroscience to the social sciences. Students will develop important, practical skills and learn to write code for using networks in their areas of interest - even as they are just learning to program with Python. Extensive sets of tutorials and homework problems provide plenty of hands-on practice and longer programming tutorials online further enhance students' programming skills. This intuitive and direct approach makes the book ideal for a first course, aimed at a wide audience without a strong background in mathematics or computing but with a desire to learn the fundamentals and applications of network science.
Publisher: Cambridge University Press
ISBN: 1108579612
Category : Science
Languages : en
Pages : 275
Book Description
Networks are everywhere: networks of friends, transportation networks and the Web. Neurons in our brains and proteins within our bodies form networks that determine our intelligence and survival. This modern, accessible textbook introduces the basics of network science for a wide range of job sectors from management to marketing, from biology to engineering, and from neuroscience to the social sciences. Students will develop important, practical skills and learn to write code for using networks in their areas of interest - even as they are just learning to program with Python. Extensive sets of tutorials and homework problems provide plenty of hands-on practice and longer programming tutorials online further enhance students' programming skills. This intuitive and direct approach makes the book ideal for a first course, aimed at a wide audience without a strong background in mathematics or computing but with a desire to learn the fundamentals and applications of network science.