Complex Models and Computational Methods in Statistics

Complex Models and Computational Methods in Statistics PDF Author: Matteo Grigoletto
Publisher: Springer Science & Business Media
ISBN: 884702871X
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.

Complex Models and Computational Methods in Statistics

Complex Models and Computational Methods in Statistics PDF Author: Matteo Grigoletto
Publisher: Springer Science & Business Media
ISBN: 884702871X
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
The use of computational methods in statistics to face complex problems and highly dimensional data, as well as the widespread availability of computer technology, is no news. The range of applications, instead, is unprecedented. As often occurs, new and complex data types require new strategies, demanding for the development of novel statistical methods and suggesting stimulating mathematical problems. This book is addressed to researchers working at the forefront of the statistical analysis of complex systems and using computationally intensive statistical methods.

Computational and Statistical Methods for Analysing Big Data with Applications

Computational and Statistical Methods for Analysing Big Data with Applications PDF Author: Shen Liu
Publisher: Academic Press
ISBN: 0081006519
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate

Computational Statistics with R

Computational Statistics with R PDF Author:
Publisher: Elsevier
ISBN: 044463441X
Category : Mathematics
Languages : en
Pages : 413

Get Book Here

Book Description
R is open source statistical computing software. Since the R core group was formed in 1997, R has been extended by a very large number of packages with extensive documentation along with examples freely available on the internet. It offers a large number of statistical and numerical methods and graphical tools and visualization of extraordinarily high quality. R was recently ranked in 14th place by the Transparent Language Popularity Index and 6th as a scripting language, after PHP, Python, and Perl. The book is designed so that it can be used right away by novices while appealing to experienced users as well. Each article begins with a data example that can be downloaded directly from the R website. Data analysis questions are articulated following the presentation of the data. The necessary R commands are spelled out and executed and the output is presented and discussed. Other examples of data sets with a different flavor and different set of commands but following the theme of the article are presented as well. Each chapter predents a hands-on-experience. R has superb graphical outlays and the book brings out the essentials in this arena. The end user can benefit immensely by applying the graphics to enhance research findings. The core statistical methodologies such as regression, survival analysis, and discrete data are all covered. - Addresses data examples that can be downloaded directly from the R website - No other source is needed to gain practical experience - Focus on the essentials in graphical outlays

Computational Statistics in Data Science

Computational Statistics in Data Science PDF Author: Richard A. Levine
Publisher: John Wiley & Sons
ISBN: 1119561086
Category : Mathematics
Languages : de
Pages : 672

Get Book Here

Book Description
Ein unverzichtbarer Leitfaden bei der Anwendung computergestützter Statistik in der modernen Datenwissenschaft In Computational Statistics in Data Science präsentiert ein Team aus bekannten Mathematikern und Statistikern eine fundierte Zusammenstellung von Konzepten, Theorien, Techniken und Praktiken der computergestützten Statistik für ein Publikum, das auf der Suche nach einem einzigen, umfassenden Referenzwerk für Statistik in der modernen Datenwissenschaft ist. Das Buch enthält etliche Kapitel zu den wesentlichen konkreten Bereichen der computergestützten Statistik, in denen modernste Techniken zeitgemäß und verständlich dargestellt werden. Darüber hinaus bietet Computational Statistics in Data Science einen kostenlosen Zugang zu den fertigen Einträgen im Online-Nachschlagewerk Wiley StatsRef: Statistics Reference Online. Außerdem erhalten die Leserinnen und Leser: * Eine gründliche Einführung in die computergestützte Statistik mit relevanten und verständlichen Informationen für Anwender und Forscher in verschiedenen datenintensiven Bereichen * Umfassende Erläuterungen zu aktuellen Themen in der Statistik, darunter Big Data, Datenstromverarbeitung, quantitative Visualisierung und Deep Learning Das Werk eignet sich perfekt für Forscher und Wissenschaftler sämtlicher Fachbereiche, die Techniken der computergestützten Statistik auf einem gehobenen oder fortgeschrittenen Niveau anwenden müssen. Zudem gehört Computational Statistics in Data Science in das Bücherregal von Wissenschaftlern, die sich mit der Erforschung und Entwicklung von Techniken der computergestützten Statistik und statistischen Grafiken beschäftigen.

Data-Driven Modeling & Scientific Computation

Data-Driven Modeling & Scientific Computation PDF Author: Jose Nathan Kutz
Publisher:
ISBN: 0199660336
Category : Computers
Languages : en
Pages : 657

Get Book Here

Book Description
Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.

Model-based Geostatistics

Model-based Geostatistics PDF Author: Peter Diggle
Publisher: Springer Science & Business Media
ISBN: 0387485368
Category : Science
Languages : en
Pages : 242

Get Book Here

Book Description
This volume is the first book-length treatment of model-based geostatistics. The text is expository, emphasizing statistical methods and applications rather than the underlying mathematical theory. Analyses of datasets from a range of scientific contexts feature prominently, and simulations are used to illustrate theoretical results. Readers can reproduce most of the computational results in the book by using the authors' software package, geoR, whose usage is illustrated in a computation section at the end of each chapter. The book assumes a working knowledge of classical and Bayesian methods of inference, linear models, and generalized linear models.

Statistics for High-Dimensional Data

Statistics for High-Dimensional Data PDF Author: Peter Bühlmann
Publisher: Springer Science & Business Media
ISBN: 364220192X
Category : Mathematics
Languages : en
Pages : 568

Get Book Here

Book Description
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Statistical and Computational Methods in Brain Image Analysis

Statistical and Computational Methods in Brain Image Analysis PDF Author: Moo K. Chung
Publisher: CRC Press
ISBN: 1439836353
Category : Mathematics
Languages : en
Pages : 436

Get Book Here

Book Description
The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data. The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI and DTI. Real imaging applications and examples elucidate the concepts and methods. In addition, most of the brain imaging data sets and MATLAB codes are available on the author’s website. By supplying the data and codes, this book enables researchers to start their statistical analyses immediately. Also suitable for graduate students, it provides an understanding of the various statistical and computational methodologies used in the field as well as important and technically challenging topics.

Advances in Complex Data Modeling and Computational Methods in Statistics

Advances in Complex Data Modeling and Computational Methods in Statistics PDF Author: Anna Maria Paganoni
Publisher: Springer
ISBN: 3319111493
Category : Mathematics
Languages : en
Pages : 210

Get Book Here

Book Description
The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed.

Methods And Models In Statistics: In Honour Of Professor John Nelder, Frs

Methods And Models In Statistics: In Honour Of Professor John Nelder, Frs PDF Author: David J Hand
Publisher: World Scientific
ISBN: 1783260696
Category : Mathematics
Languages : en
Pages : 261

Get Book Here

Book Description
John Nelder was one of the most influential statisticians of his generation, having made an impact on many parts of the discipline. This book contains reviews of some of those areas, written by top researchers. It is accessible to non-specialists, and is noteworthy for its breadth of coverage.