Complex Calculus: Mathematical Methods for Physics and Engineering -

Complex Calculus: Mathematical Methods for Physics and Engineering - PDF Author: Jorge L. Delyra
Publisher: Independently Published
ISBN: 9781793012050
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
There is a longstanding conflict between extension and depth in the teaching of mathematics to physics students. This text intends to present an approach that tries to track what could be called the ``middle way'' in this conflict. It is the result of several years of experience of the author teaching the mathematical physics courses at the Physics Institute of the University of São Paulo. The text is organized in the form of relatively short chapters, each appropriate for exposition in one lecture. Each chapter includes a list of proposed problems, which have varied levels of difficulty, including practice problems, problems that complete and extend the material presented in the text, and some longer and more difficult problems, which are presented as challenges to the students. There are complete solutions available, detailed and commented, to all the problems proposed, which are presented in separate volumes. This volume is dedicated to the complex calculus. This is a more practical and less abstract version of complex analysis and of the study of analytic functions. This does not mean that there are no proofs in the text, since all the fundamental theorems are proved with a good level of rigor. The text starts from the very beginning, with the definition of complex numbers, and proceeds up to the study of integrals on the complex plane and on Riemann surfaces. The facts and theorems established here will be used routinely in all the subsequent volumes of this series of books. The development is based on an analogy with vector fields and with electrostatics, emphasizing interpretations and proofs that have a geometrical character. The approach is algorithmic and emphasizes the representation of functions by series, with detailed discussion of the convergence issues.

Complex Calculus: Mathematical Methods for Physics and Engineering -

Complex Calculus: Mathematical Methods for Physics and Engineering - PDF Author: Jorge L. Delyra
Publisher: Independently Published
ISBN: 9781793012050
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
There is a longstanding conflict between extension and depth in the teaching of mathematics to physics students. This text intends to present an approach that tries to track what could be called the ``middle way'' in this conflict. It is the result of several years of experience of the author teaching the mathematical physics courses at the Physics Institute of the University of São Paulo. The text is organized in the form of relatively short chapters, each appropriate for exposition in one lecture. Each chapter includes a list of proposed problems, which have varied levels of difficulty, including practice problems, problems that complete and extend the material presented in the text, and some longer and more difficult problems, which are presented as challenges to the students. There are complete solutions available, detailed and commented, to all the problems proposed, which are presented in separate volumes. This volume is dedicated to the complex calculus. This is a more practical and less abstract version of complex analysis and of the study of analytic functions. This does not mean that there are no proofs in the text, since all the fundamental theorems are proved with a good level of rigor. The text starts from the very beginning, with the definition of complex numbers, and proceeds up to the study of integrals on the complex plane and on Riemann surfaces. The facts and theorems established here will be used routinely in all the subsequent volumes of this series of books. The development is based on an analogy with vector fields and with electrostatics, emphasizing interpretations and proofs that have a geometrical character. The approach is algorithmic and emphasizes the representation of functions by series, with detailed discussion of the convergence issues.

Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering PDF Author: Kenneth Franklin Riley
Publisher:
ISBN:
Category :
Languages : en
Pages : 1008

Get Book Here

Book Description


Mathematical Methods for Physics and Engineering

Mathematical Methods for Physics and Engineering PDF Author: Mattias Blennow
Publisher: CRC Press
ISBN: 1351676075
Category : Science
Languages : en
Pages : 749

Get Book Here

Book Description
Suitable for advanced undergraduate and graduate students, this new textbook contains an introduction to the mathematical concepts used in physics and engineering. The entire book is unique in that it draws upon applications from physics, rather than mathematical examples, to ensure students are fully equipped with the tools they need. This approach prepares the reader for advanced topics, such as quantum mechanics and general relativity, while offering examples, problems, and insights into classical physics. The book is also distinctive in the coverage it devotes to modelling, and to oft-neglected topics such as Green's functions.

Mathematical Methods in Physics and Engineering

Mathematical Methods in Physics and Engineering PDF Author: John W. Dettman
Publisher: Courier Corporation
ISBN: 0486169367
Category : Science
Languages : en
Pages : 450

Get Book Here

Book Description
Intended for college-level physics, engineering, or mathematics students, this volume offers an algebraically based approach to various topics in applied math. It is accessible to undergraduates with a good course in calculus which includes infinite series and uniform convergence. Exercises follow each chapter to test the student's grasp of the material; however, the author has also included exercises that extend the results to new situations and lay the groundwork for new concepts to be introduced later. A list of references for further reading will be found at the end of each chapter. For this second revised edition, Professor Dettman included a new section on generalized functions to help explain the use of the Dirac delta function in connection with Green's functions. In addition, a new approach to series solutions of ordinary differential equations has made the treatment independent of complex variable theory. This means that the first six chapters can be grasped without prior knowledge of complex variables. However, since Chapter 8 depends heavily on analytic functions of a complex variable, a new Chapter 7 on analytic function theory has been written.

Basic Training in Mathematics

Basic Training in Mathematics PDF Author: R. Shankar
Publisher: Springer
ISBN: 1489967982
Category : Science
Languages : en
Pages : 371

Get Book Here

Book Description
Based on course material used by the author at Yale University, this practical text addresses the widening gap found between the mathematics required for upper-level courses in the physical sciences and the knowledge of incoming students. This superb book offers students an excellent opportunity to strengthen their mathematical skills by solving various problems in differential calculus. By covering material in its simplest form, students can look forward to a smooth entry into any course in the physical sciences.

Advanced Mathematical Methods in Science and Engineering

Advanced Mathematical Methods in Science and Engineering PDF Author: S.I. Hayek
Publisher: CRC Press
ISBN: 1420081985
Category : Mathematics
Languages : en
Pages : 862

Get Book Here

Book Description
Classroom-tested, Advanced Mathematical Methods in Science and Engineering, Second Edition presents methods of applied mathematics that are particularly suited to address physical problems in science and engineering. Numerous examples illustrate the various methods of solution and answers to the end-of-chapter problems are included at the back of the book. After introducing integration and solution methods of ordinary differential equations (ODEs), the book presents Bessel and Legendre functions as well as the derivation and methods of solution of linear boundary value problems for physical systems in one spatial dimension governed by ODEs. It also covers complex variables, calculus, and integrals; linear partial differential equations (PDEs) in classical physics and engineering; the derivation of integral transforms; Green’s functions for ODEs and PDEs; asymptotic methods for evaluating integrals; and the asymptotic solution of ODEs. New to this edition, the final chapter offers an extensive treatment of numerical methods for solving non-linear equations, finite difference differentiation and integration, initial value and boundary value ODEs, and PDEs in mathematical physics. Chapters that cover boundary value problems and PDEs contain derivations of the governing differential equations in many fields of applied physics and engineering, such as wave mechanics, acoustics, heat flow in solids, diffusion of liquids and gases, and fluid flow. An update of a bestseller, this second edition continues to give students the strong foundation needed to apply mathematical techniques to the physical phenomena encountered in scientific and engineering applications.

Essentials of Mathematical Methods in Science and Engineering

Essentials of Mathematical Methods in Science and Engineering PDF Author: Selcuk S. Bayin
Publisher: John Wiley & Sons
ISBN: 1118626168
Category : Mathematics
Languages : en
Pages : 577

Get Book Here

Book Description
A complete introduction to the multidisciplinary applications of mathematical methods In order to work with varying levels of engineering and physics research, it is important to have a firm understanding of key mathematical concepts such as advanced calculus, differential equations, complex analysis, and introductory mathematical physics. Essentials of Mathematical Methods in Science and Engineering provides a comprehensive introduction to these methods under one cover, outlining basic mathematical skills while also encouraging students and practitioners to develop new, interdisciplinary approaches to their research. The book begins with core topics from various branches of mathematics such as limits, integrals, and inverse functions. Subsequent chapters delve into the analytical tools that are commonly used in scientific and engineering studies, including vector analysis, generalized coordinates, determinants and matrices, linear algebra, complex numbers, complex analysis, and Fourier series. The author provides an extensive chapter on probability theory with applications to statistical mechanics and thermodynamics that complements the following chapter on information theory, which contains coverage of Shannon's theory, decision theory, game theory, and quantum information theory. A comprehensive list of references facilitates further exploration of these topics. Throughout the book, numerous examples and exercises reinforce the presented concepts and techniques. In addition, the book is in a modular format, so each chapter covers its subject thoroughly and can be read independently. This structure affords flexibility for individualizing courses and teaching. Providing a solid foundation and overview of the various mathematical methods and applications in multidisciplinary research, Essentials of Mathematical Methods in Science and Engineering is an excellent text for courses in physics, science, mathematics, and engineering at the upper-undergraduate and graduate levels. It also serves as a useful reference for scientists and engineers who would like a practical review of mathematical methods.

Mathematical Methods

Mathematical Methods PDF Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 038721562X
Category : Mathematics
Languages : en
Pages : 673

Get Book Here

Book Description
Intended to follow the usual introductory physics courses, this book contains many original, lucid and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts to help guide students through the material.

Mathematical Methods for Optical Physics and Engineering

Mathematical Methods for Optical Physics and Engineering PDF Author: Gregory J. Gbur
Publisher: Cambridge University Press
ISBN: 1139492691
Category : Science
Languages : en
Pages : 819

Get Book Here

Book Description
The first textbook on mathematical methods focusing on techniques for optical science and engineering, this text is ideal for upper division undergraduate and graduate students in optical physics. Containing detailed sections on the basic theory, the textbook places strong emphasis on connecting the abstract mathematical concepts to the optical systems to which they are applied. It covers many topics which usually only appear in more specialized books, such as Zernike polynomials, wavelet and fractional Fourier transforms, vector spherical harmonics, the z-transform, and the angular spectrum representation. Most chapters end by showing how the techniques covered can be used to solve an optical problem. Essay problems based on research publications and numerous exercises help to further strengthen the connection between the theory and its applications.

Mathematical Methods for Physicists and Engineers

Mathematical Methods for Physicists and Engineers PDF Author: Royal Eugene Collins
Publisher: Courier Corporation
ISBN: 0486150127
Category : Science
Languages : en
Pages : 404

Get Book Here

Book Description
Practical text focuses on fundamental applied math needed to deal with physics and engineering problems: elementary vector calculus, special functions of mathematical physics, calculus of variations, much more. 1968 edition.