Author: Frances Clare Kirwan
Publisher: Cambridge University Press
ISBN: 9780521423533
Category : Mathematics
Languages : en
Pages : 278
Book Description
This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.
Complex Algebraic Curves
Author: Frances Clare Kirwan
Publisher: Cambridge University Press
ISBN: 9780521423533
Category : Mathematics
Languages : en
Pages : 278
Book Description
This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.
Publisher: Cambridge University Press
ISBN: 9780521423533
Category : Mathematics
Languages : en
Pages : 278
Book Description
This development of the theory of complex algebraic curves was one of the peaks of nineteenth century mathematics. They have many fascinating properties and arise in various areas of mathematics, from number theory to theoretical physics, and are the subject of much research. By using only the basic techniques acquired in most undergraduate courses in mathematics, Dr. Kirwan introduces the theory, observes the algebraic and topological properties of complex algebraic curves, and shows how they are related to complex analysis.
Algebraic Curves and Riemann Surfaces
Author: Rick Miranda
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414
Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 0821802682
Category : Mathematics
Languages : en
Pages : 414
Book Description
In this book, Miranda takes the approach that algebraic curves are best encountered for the first time over the complex numbers, where the reader's classical intuition about surfaces, integration, and other concepts can be brought into play. Therefore, many examples of algebraic curves are presented in the first chapters. In this way, the book begins as a primer on Riemann surfaces, with complex charts and meromorphic functions taking centre stage. But the main examples come fromprojective curves, and slowly but surely the text moves toward the algebraic category. Proofs of the Riemann-Roch and Serre Dualtiy Theorems are presented in an algebraic manner, via an adaptation of the adelic proof, expressed completely in terms of solving a Mittag-Leffler problem. Sheaves andcohomology are introduced as a unifying device in the later chapters, so that their utility and naturalness are immediately obvious. Requiring a background of one term of complex variable theory and a year of abstract algebra, this is an excellent graduate textbook for a second-term course in complex variables or a year-long course in algebraic geometry.
Plane Algebraic Curves
Author: Gerd Fischer
Publisher: American Mathematical Soc.
ISBN: 0821821229
Category : Mathematics
Languages : en
Pages : 249
Book Description
This is an excellent introduction to algebraic geometry, which assumes only standard undergraduate mathematical topics: complex analysis, rings and fields, and topology. Reading this book will help establish the geometric intuition that lies behind the more advanced ideas and techniques used in the study of higher-dimensional varieties.
Publisher: American Mathematical Soc.
ISBN: 0821821229
Category : Mathematics
Languages : en
Pages : 249
Book Description
This is an excellent introduction to algebraic geometry, which assumes only standard undergraduate mathematical topics: complex analysis, rings and fields, and topology. Reading this book will help establish the geometric intuition that lies behind the more advanced ideas and techniques used in the study of higher-dimensional varieties.
A Scrapbook of Complex Curve Theory
Author: Charles Herbert Clemens
Publisher: American Mathematical Soc.
ISBN: 0821833073
Category : Mathematics
Languages : en
Pages : 202
Book Description
This fine book by Herb Clemens quickly became a favorite of many algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of ``impressions'' of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals a wonderfully eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem. The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.
Publisher: American Mathematical Soc.
ISBN: 0821833073
Category : Mathematics
Languages : en
Pages : 202
Book Description
This fine book by Herb Clemens quickly became a favorite of many algebraic geometers when it was first published in 1980. It has been popular with novices and experts ever since. It is written as a book of ``impressions'' of a journey through the theory of complex algebraic curves. Many topics of compelling beauty occur along the way. A cursory glance at the subjects visited reveals a wonderfully eclectic selection, from conics and cubics to theta functions, Jacobians, and questions of moduli. By the end of the book, the theme of theta functions becomes clear, culminating in the Schottky problem. The author's intent was to motivate further study and to stimulate mathematical activity. The attentive reader will learn much about complex algebraic curves and the tools used to study them. The book can be especially useful to anyone preparing a course on the topic of complex curves or anyone interested in supplementing his/her reading.
Algebraic Curves
Author: Maxim E. Kazaryan
Publisher: Springer
ISBN: 3030029433
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework
Publisher: Springer
ISBN: 3030029433
Category : Mathematics
Languages : en
Pages : 237
Book Description
This book offers a concise yet thorough introduction to the notion of moduli spaces of complex algebraic curves. Over the last few decades, this notion has become central not only in algebraic geometry, but in mathematical physics, including string theory, as well. The book begins by studying individual smooth algebraic curves, including the most beautiful ones, before addressing families of curves. Studying families of algebraic curves often proves to be more efficient than studying individual curves: these families and their total spaces can still be smooth, even if there are singular curves among their members. A major discovery of the 20th century, attributed to P. Deligne and D. Mumford, was that curves with only mild singularities form smooth compact moduli spaces. An unexpected byproduct of this discovery was the realization that the analysis of more complex curve singularities is not a necessary step in understanding the geometry of the moduli spaces. The book does not use the sophisticated machinery of modern algebraic geometry, and most classical objects related to curves – such as Jacobian, space of holomorphic differentials, the Riemann-Roch theorem, and Weierstrass points – are treated at a basic level that does not require a profound command of algebraic geometry, but which is sufficient for extending them to vector bundles and other geometric objects associated to moduli spaces. Nevertheless, it offers clear information on the construction of the moduli spaces, and provides readers with tools for practical operations with this notion. Based on several lecture courses given by the authors at the Independent University of Moscow and Higher School of Economics, the book also includes a wealth of problems, making it suitable not only for individual research, but also as a textbook for undergraduate and graduate coursework
Algebraic Curves, the Brill and Noether Way
Author: Eduardo Casas-Alvero
Publisher: Springer Nature
ISBN: 3030290166
Category : Mathematics
Languages : en
Pages : 237
Book Description
The book presents the central facts of the local, projective and intrinsic theories of complex algebraic plane curves, with complete proofs and starting from low-level prerequisites. It includes Puiseux series, branches, intersection multiplicity, Bézout theorem, rational functions, Riemann-Roch theorem and rational maps. It is aimed at graduate and advanced undergraduate students, and also at anyone interested in algebraic curves or in an introduction to algebraic geometry via curves.
Publisher: Springer Nature
ISBN: 3030290166
Category : Mathematics
Languages : en
Pages : 237
Book Description
The book presents the central facts of the local, projective and intrinsic theories of complex algebraic plane curves, with complete proofs and starting from low-level prerequisites. It includes Puiseux series, branches, intersection multiplicity, Bézout theorem, rational functions, Riemann-Roch theorem and rational maps. It is aimed at graduate and advanced undergraduate students, and also at anyone interested in algebraic curves or in an introduction to algebraic geometry via curves.
Singular Algebraic Curves
Author: Gert-Martin Greuel
Publisher: Springer
ISBN: 3030033503
Category : Mathematics
Languages : en
Pages : 569
Book Description
Singular algebraic curves have been in the focus of study in algebraic geometry from the very beginning, and till now remain a subject of an active research related to many modern developments in algebraic geometry, symplectic geometry, and tropical geometry. The monograph suggests a unified approach to the geometry of singular algebraic curves on algebraic surfaces and their families, which applies to arbitrary singularities, allows one to treat all main questions concerning the geometry of equisingular families of curves, and, finally, leads to results which can be viewed as the best possible in a reasonable sense. Various methods of the cohomology vanishing theory as well as the patchworking construction with its modifications will be of a special interest for experts in algebraic geometry and singularity theory. The introductory chapters on zero-dimensional schemes and global deformation theory can well serve as a material for special courses and seminars for graduate and post-graduate students.Geometry in general plays a leading role in modern mathematics, and algebraic geometry is the most advanced area of research in geometry. In turn, algebraic curves for more than one century have been the central subject of algebraic geometry both in fundamental theoretic questions and in applications to other fields of mathematics and mathematical physics. Particularly, the local and global study of singular algebraic curves involves a variety of methods and deep ideas from geometry, analysis, algebra, combinatorics and suggests a number of hard classical and newly appeared problems which inspire further development in this research area.
Publisher: Springer
ISBN: 3030033503
Category : Mathematics
Languages : en
Pages : 569
Book Description
Singular algebraic curves have been in the focus of study in algebraic geometry from the very beginning, and till now remain a subject of an active research related to many modern developments in algebraic geometry, symplectic geometry, and tropical geometry. The monograph suggests a unified approach to the geometry of singular algebraic curves on algebraic surfaces and their families, which applies to arbitrary singularities, allows one to treat all main questions concerning the geometry of equisingular families of curves, and, finally, leads to results which can be viewed as the best possible in a reasonable sense. Various methods of the cohomology vanishing theory as well as the patchworking construction with its modifications will be of a special interest for experts in algebraic geometry and singularity theory. The introductory chapters on zero-dimensional schemes and global deformation theory can well serve as a material for special courses and seminars for graduate and post-graduate students.Geometry in general plays a leading role in modern mathematics, and algebraic geometry is the most advanced area of research in geometry. In turn, algebraic curves for more than one century have been the central subject of algebraic geometry both in fundamental theoretic questions and in applications to other fields of mathematics and mathematical physics. Particularly, the local and global study of singular algebraic curves involves a variety of methods and deep ideas from geometry, analysis, algebra, combinatorics and suggests a number of hard classical and newly appeared problems which inspire further development in this research area.
Vertex Algebras and Algebraic Curves
Author: Edward Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418
Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418
Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Algebraic Geometry I
Author: V.I. Danilov
Publisher: Springer Science & Business Media
ISBN: 9783540637059
Category : Mathematics
Languages : en
Pages : 328
Book Description
"... To sum up, this book helps to learn algebraic geometry in a short time, its concrete style is enjoyable for students and reveals the beauty of mathematics." --Acta Scientiarum Mathematicarum
Publisher: Springer Science & Business Media
ISBN: 9783540637059
Category : Mathematics
Languages : en
Pages : 328
Book Description
"... To sum up, this book helps to learn algebraic geometry in a short time, its concrete style is enjoyable for students and reveals the beauty of mathematics." --Acta Scientiarum Mathematicarum
A Guide to Plane Algebraic Curves
Author: Keith Kendig
Publisher: MAA
ISBN: 0883853531
Category : Mathematics
Languages : en
Pages : 211
Book Description
An accessible introduction to the plane algebraic curves that also serves as a natural entry point to algebraic geometry. This book can be used for an undergraduate course, or as a companion to algebraic geometry at graduate level.
Publisher: MAA
ISBN: 0883853531
Category : Mathematics
Languages : en
Pages : 211
Book Description
An accessible introduction to the plane algebraic curves that also serves as a natural entry point to algebraic geometry. This book can be used for an undergraduate course, or as a companion to algebraic geometry at graduate level.