Comparison of Near and Mid-Infrared Tunable Diode Laser Absorption Spectroscopy for the Analysis of Combustion Gases

Comparison of Near and Mid-Infrared Tunable Diode Laser Absorption Spectroscopy for the Analysis of Combustion Gases PDF Author: J. H. Miller
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Comparison of Near and Mid-Infrared Tunable Diode Laser Absorption Spectroscopy for the Analysis of Combustion Gases

Comparison of Near and Mid-Infrared Tunable Diode Laser Absorption Spectroscopy for the Analysis of Combustion Gases PDF Author: J. H. Miller
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Measurements of Combustion Gases Using Tunable Diode Laser Absorption Spectroscopy

Measurements of Combustion Gases Using Tunable Diode Laser Absorption Spectroscopy PDF Author: Reynolds Reed Skaggs
Publisher:
ISBN:
Category :
Languages : en
Pages : 554

Get Book Here

Book Description


Absorption Spectroscopy of Combustion Gases Using a Tunable Diode Laser

Absorption Spectroscopy of Combustion Gases Using a Tunable Diode Laser PDF Author: Patricia Kuntz Falcone
Publisher:
ISBN:
Category : Absorption spectra
Languages : en
Pages : 209

Get Book Here

Book Description


Tunable Diode Laser Absorption Spectroscopy Verification Analysis for Use in the Combustion Optimization and Analysis Laser Laboratory

Tunable Diode Laser Absorption Spectroscopy Verification Analysis for Use in the Combustion Optimization and Analysis Laser Laboratory PDF Author: Christina R. Serianne
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 210

Get Book Here

Book Description


New Enhanced Sensitivity Infrared Laser Spectroscopy Techniques Applied to Reactive Plasmas and Trace Gas Detection

New Enhanced Sensitivity Infrared Laser Spectroscopy Techniques Applied to Reactive Plasmas and Trace Gas Detection PDF Author: Stefan Welzel
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832523456
Category : Science
Languages : en
Pages : 198

Get Book Here

Book Description
Infrared laser absorption spectroscopy (IRLAS) employing both tuneable diode and quantum cascade lasers (TDLs, QCLs) has been applied with both high sensitivity and high time resolution to plasma diagnostics and trace gas measurements. TDLAS combined with a conventional White type multiple pass cell was used to detect up to 13 constituent molecular species in low pressure Ar/H2/N2/O2 and Ar/CH4/N2/O2 microwave discharges, among them the main products such as H2O, NH3, NO and CO, HCN respectively. The hydroxyl radical has been measured in the mid infrared (MIR) spectral range in-situ in both plasmas yielding number densities of between 1011 ... 1012 cm-3. Strong indications of surface dominated formation of either NH3 or N2O and NO were found in the H2-N2-O2 system. In methane containing plasmas a transition between deposition and etching conditions and generally an incomplete oxidation of the precursor were observed. The application of QCLs for IRLAS under low pressure conditions employing the most common tuning approaches has been investigated in detail. A new method of analysing absorption features quantitatively when the rapid passage effect is present is proposed. If power saturation is negligible, integrating the undisturbed half of the line profile yields accurate number densities without calibrating the system. By means of a time resolved analysis of individual chirped QCL pulses the main reasons for increased effective laser line widths could be identified. Apart from the well-known frequency down chirp non-linear absorption phenomena and bandwidth limitations of the detection system may significantly degrade the performance and accuracy of inter pulse spectrometers. The minimum analogue bandwidth of the entire system should normally not fall below 250 MHz. QCLAS using pulsed lasers has been used for highly time resolved measurements in reactive plasmas for the first time enabling a time resolution down to about 100 ns to be achieved. A temperature increase of typically less than 50 K has been established for pulsed DC discharges containing Ar/N2 and traces of NO. The main NO production and depletion reactions have been identified from a comparison of model calculations and time resolved measurements in plasma pulses of up to 100 ms. Considerable NO struction is observed after 5 ... 10 ms due to the impact of N atoms. Finally, thermoelectrically cooled pulsed and continuous wave (cw) QCLs have been employed for high finesse cavity absorption spectroscopy in the MIR. Cavity ring down spectroscopy (CRDS) has been performed with pulsed QCLs and was found to be limited by the intrinsic frequency chirp of the laser suppressing an efficient intensity build-up inside the cavity. Consequently the accuracy and advantage of an absolute internal absorption calibration is not achievable. A room temperature cw QCL was used in a complementary cavity enhanced absorption spectroscopy (CEAS) configuration which was equipped with different cavities of up to 1.3 m length. This spectrometer yielded path lengths of up to 4 km and a noise equivalent absorption down to 4 x 10-8 cm-1Hz-1/2. The corresponding molecular concentration detection limit (e.g. for CH4, N2O and C2H2 at 1303 cm-1/7.66 Aem) was generally below 1 x 1010 cm-3 for 1 s integration times and one order of magnitude less for 30 s integration times. The main limiting factor for achieving even higher sensitivity is the residual mode noise of the cavity. Employing a 0.5 m long cavity the achieved sensitivity was good enough for the selective measurement of trace atmospheric constituents at 2.2 mbar.

Near-IR Tunable Diode Laser Absorption Spectroscopy of Gaseous Pollutants

Near-IR Tunable Diode Laser Absorption Spectroscopy of Gaseous Pollutants PDF Author: 陳潔瑩
Publisher: Open Dissertation Press
ISBN: 9781374768512
Category :
Languages : en
Pages :

Get Book Here

Book Description
This dissertation, "Near-ir Tunable Diode Laser Absorption Spectroscopy of Gaseous Pollutants" by 陳潔瑩, Kit-ying, Anna, Chan, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. DOI: 10.5353/th_b3121494 Subjects: Amplitude modulation Molecular spectroscopy Tunable lasers Diodes Air - Pollution - Measurement

CO Measurements in Combustion Gases by Laser Absorption Spectroscopy and Probe Sampling

CO Measurements in Combustion Gases by Laser Absorption Spectroscopy and Probe Sampling PDF Author: Susan M. Schoenung
Publisher:
ISBN:
Category : Absorption spectra
Languages : en
Pages : 21

Get Book Here

Book Description
The initial work in a program at Stanford to develop laser-based combustion diagnostics has focused on tunable laser absorption spectroscopy using an infrared diode laser. An important aspect of this program is the validation of the laser technique under controlled conditions and by comparison with established probe-based methods. This paper reports preliminary results from such experiments, which consisted of CO concentration measurements in a flat premixed flame using a tunable diode laser, and both CO and CO2 measurements in a similar flame using an uncooled, aerodynamically quenched quartz sampling probe. CO was chosen for this study for several reasons: it is an important flame species whose concentration can be predicted under equilibrium conditions which prevail in the post-flame region of fuel-rich flames; its concentration in combustion products can be easily varied from 10 ppm to greater than 10%, a range which is compatible with commercial NDIR instruments; and it has a well-understood infrared absorption spectrum which simplifies analysis of the absorption measurements.

Tunable Diode Laser Absorption Probe Techniques for Species Measurements in Combustion Gases

Tunable Diode Laser Absorption Probe Techniques for Species Measurements in Combustion Gases PDF Author: Susan Marie Schoenung
Publisher:
ISBN:
Category : Carbon monoxide
Languages : en
Pages : 234

Get Book Here

Book Description


Near Infrared Tunable Diode Laser Spectroscopy for Aero Engine Related Applications

Near Infrared Tunable Diode Laser Spectroscopy for Aero Engine Related Applications PDF Author: James R. P. Bain
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Tunable diode laser spectroscopy is a widely used technique for recovering quantitative gas information in a range of industrial applications. Established methods often use readily available, robust and low cost optoelectronic hardware in the near-infrared, with output wavelengths that coincide with the absorption spectra of several important gas species of interest, providing a versatile platform for gas analysis instrumentation. In this work the challenges associated with the recovery of gas information from harsh detection environments, particularly for aero engine diagnostics, are considered. For stand-alone instrumentation, calibration-free direct absorption measurements are highly advantageous yet calibrated techniques employing wavelength modulation spectroscopy are often favoured due to their significantly higher sensitivities. Recent developments have enabled calibration-free line shape recovery using lock-in amplifier detection of the residual amplitude modulation in wavelength modulated signals. These techniques have significant potential in harsh environments, but the overall sensitivity is limited by distortions to the recovered line shapes at high modulation amplitudes and by large background signals that saturate the detection electronics. In this thesis, solutions to these two problems are proposed, investigated and validated. A correction function is derived that is able to account for line shape distortions at arbitrarily high modulation indices. Application of the function depends upon knowledge of the experimental modulation index and two methods for extracting this information directly from the experimental signals are described. The full correction procedure has been experimentally validated. An investigation was made into the use of autobalanced photoreceivers, typically used for common mode noise cancellation, for direct absorption measurements and in a different configuration for nulling of the residual amplitude modulation (RAM) in wavelength modulation spectroscopy. Initial measurements suggest that removal of the background RAM can increase the lock-in detection sensitivity by over an order of magnitude. In addition an external amplitude modulator has been iv shown to be an effective method for producing sensitive absorption signals that are free of distortions, recoverable at frequencies that are outside the bandwidth of most environmental noise sources. A temperature sensor based on ratio thermometry of ambient water vapour absorption was designed and evaluated. The sensor is intended to provide accurate intake gas temperature information during aero engine ground testing when misting conditions prevent standard thermocouples from providing reliable data. Direct detection and second harmonic wavelength modulation spectroscopy experiments were undertaken in an environmental chamber, over the range 273-313K, to test the potential accuracy of the proposed system. Using a second harmonic peak height method, temperature information based on a calibration was able to recover temperature measurements with precision of ±0.4K however the overall accuracy suffered from a problematic calibration drift. Three engine test campaigns are described in which a range of recovery methods and potential optical system layouts are evaluated for the purposes of intake and exhaust mounted test bed sensor systems. The effects of extreme noise conditions were observed on a variety of measurements and favourable detection and modulation options were identified for the purpose of planning proposed future engine tests. Exhaust plume measurements of high temperature water vapour on the Rolls-Royce Environmentally Friendly Engine demonstrator established the viability of temperature and concentration measurements up to 850K.

Laser Spectroscopy for Sensing

Laser Spectroscopy for Sensing PDF Author: Matthieu Baudelet
Publisher: Elsevier
ISBN: 085709873X
Category : Technology & Engineering
Languages : en
Pages : 601

Get Book Here

Book Description
Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. Part one reviews basic concepts of atomic and molecular processes and presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation. In addition, it explains the selectivity, sensitivity, and stability of the measurements, the construction of databases, and the automation of data analysis by machine learning. Part two explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media. These chapters discuss imaging methods using laser-induced fluorescence and phosphorescence spectroscopies before focusing on light detection and ranging, photothermal spectroscopy and terahertz spectroscopy. Part three covers a variety of applications of these techniques, particularly the detection of chemical, biological, and explosive threats, as well as their use in medicine and forensic science. Finally, the book examines spectroscopic analysis of industrial materials and their applications in nuclear research and industry. The text provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. It is of great interest to laser scientists and engineers, as well as professionals using lasers for medical applications, environmental applications, military applications, and material processing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry