Author: Jacques Izard
Publisher: Academic Press
ISBN: 0124105084
Category : Science
Languages : en
Pages : 188
Book Description
Concisely discussing the application of high throughput analysis to move forward our understanding of microbial principles, Metagenomics for Microbiology provides a solid base for the design and analysis of omics studies for the characterization of microbial consortia. The intended audience includes clinical and environmental microbiologists, molecular biologists, infectious disease experts, statisticians, biostatisticians, and public health scientists. This book focuses on the technological underpinnings of metagenomic approaches and their conceptual and practical applications. With the next-generation genomic sequencing revolution increasingly permitting researchers to decipher the coding information of the microbes living with us, we now have a unique capacity to compare multiple sites within individuals and at higher resolution and greater throughput than hitherto possible. The recent articulation of this paradigm points to unique possibilities for investigation of our dynamic relationship with these cellular communities, and excitingly the probing of their therapeutic potential in disease prevention or treatment of the future. - Expertly describes the latest metagenomic methodologies and best-practices, from sample collection to data analysis for taxonomic, whole shotgun metagenomic, and metatranscriptomic studies - Includes clear-headed pointers and quick starts to direct research efforts and increase study efficacy, eschewing ponderous prose - Presented topics include sample collection and preparation, data generation and quality control, third generation sequencing, advances in computational analyses of shotgun metagenomic sequence data, taxonomic profiling of shotgun data, hypothesis testing, and mathematical and computational analysis of longitudinal data and time series. Past-examples and prospects are provided to contextualize the applications.
Metagenomics for Microbiology
Author: Jacques Izard
Publisher: Academic Press
ISBN: 0124105084
Category : Science
Languages : en
Pages : 188
Book Description
Concisely discussing the application of high throughput analysis to move forward our understanding of microbial principles, Metagenomics for Microbiology provides a solid base for the design and analysis of omics studies for the characterization of microbial consortia. The intended audience includes clinical and environmental microbiologists, molecular biologists, infectious disease experts, statisticians, biostatisticians, and public health scientists. This book focuses on the technological underpinnings of metagenomic approaches and their conceptual and practical applications. With the next-generation genomic sequencing revolution increasingly permitting researchers to decipher the coding information of the microbes living with us, we now have a unique capacity to compare multiple sites within individuals and at higher resolution and greater throughput than hitherto possible. The recent articulation of this paradigm points to unique possibilities for investigation of our dynamic relationship with these cellular communities, and excitingly the probing of their therapeutic potential in disease prevention or treatment of the future. - Expertly describes the latest metagenomic methodologies and best-practices, from sample collection to data analysis for taxonomic, whole shotgun metagenomic, and metatranscriptomic studies - Includes clear-headed pointers and quick starts to direct research efforts and increase study efficacy, eschewing ponderous prose - Presented topics include sample collection and preparation, data generation and quality control, third generation sequencing, advances in computational analyses of shotgun metagenomic sequence data, taxonomic profiling of shotgun data, hypothesis testing, and mathematical and computational analysis of longitudinal data and time series. Past-examples and prospects are provided to contextualize the applications.
Publisher: Academic Press
ISBN: 0124105084
Category : Science
Languages : en
Pages : 188
Book Description
Concisely discussing the application of high throughput analysis to move forward our understanding of microbial principles, Metagenomics for Microbiology provides a solid base for the design and analysis of omics studies for the characterization of microbial consortia. The intended audience includes clinical and environmental microbiologists, molecular biologists, infectious disease experts, statisticians, biostatisticians, and public health scientists. This book focuses on the technological underpinnings of metagenomic approaches and their conceptual and practical applications. With the next-generation genomic sequencing revolution increasingly permitting researchers to decipher the coding information of the microbes living with us, we now have a unique capacity to compare multiple sites within individuals and at higher resolution and greater throughput than hitherto possible. The recent articulation of this paradigm points to unique possibilities for investigation of our dynamic relationship with these cellular communities, and excitingly the probing of their therapeutic potential in disease prevention or treatment of the future. - Expertly describes the latest metagenomic methodologies and best-practices, from sample collection to data analysis for taxonomic, whole shotgun metagenomic, and metatranscriptomic studies - Includes clear-headed pointers and quick starts to direct research efforts and increase study efficacy, eschewing ponderous prose - Presented topics include sample collection and preparation, data generation and quality control, third generation sequencing, advances in computational analyses of shotgun metagenomic sequence data, taxonomic profiling of shotgun data, hypothesis testing, and mathematical and computational analysis of longitudinal data and time series. Past-examples and prospects are provided to contextualize the applications.
New Approaches to Prokaryotic Systematics
Author: Michael Goodfellow
Publisher: Academic Press
ISBN: 9780128001769
Category : Science
Languages : en
Pages : 0
Book Description
Volume 41 of Methods in Microbiology is a methods book designed to highlight procedures that will revitalize the purposes and practices of prokaryotic systematics. This volume will notably show that genomics and computational biology are pivotal to the new direction of travel and will emphasise that new developments need to be built upon historical good practices, notably the continued use of the nomenclatural type concept and the requirement to deposit type strains in at least two service culture collections in different countries.
Publisher: Academic Press
ISBN: 9780128001769
Category : Science
Languages : en
Pages : 0
Book Description
Volume 41 of Methods in Microbiology is a methods book designed to highlight procedures that will revitalize the purposes and practices of prokaryotic systematics. This volume will notably show that genomics and computational biology are pivotal to the new direction of travel and will emphasise that new developments need to be built upon historical good practices, notably the continued use of the nomenclatural type concept and the requirement to deposit type strains in at least two service culture collections in different countries.
The Rumen and Its Microbes
Author: Robert E. Hungate
Publisher: Elsevier
ISBN: 1483263622
Category : Nature
Languages : en
Pages : 544
Book Description
The Rumen and Its Microbes is a contribution to the ecology of this important microbial habitat. Relatively few microbial habitats have been subjected to a thorough quantitative ecological analysis. The rumen fermentation is peculiarly suitable because of its relatively constant and continuous nature and because of the very rapid rates of conversion of organic matter. Although analysis of the ruminant-microbe symbiosis is still far from complete, knowledge is sufficient for formulation of principles and for identification and measurement of important parameters. The first eight chapters of the book include a description of the rumen and its microbes, their activities, and the extent of these activities. This basic biology provides a framework in which applications to agriculture can be evaluated. These applications are discussed in the last four chapters: host metabolism, variation in the rumen, possible practical applications, and abnormalities in rumen function.
Publisher: Elsevier
ISBN: 1483263622
Category : Nature
Languages : en
Pages : 544
Book Description
The Rumen and Its Microbes is a contribution to the ecology of this important microbial habitat. Relatively few microbial habitats have been subjected to a thorough quantitative ecological analysis. The rumen fermentation is peculiarly suitable because of its relatively constant and continuous nature and because of the very rapid rates of conversion of organic matter. Although analysis of the ruminant-microbe symbiosis is still far from complete, knowledge is sufficient for formulation of principles and for identification and measurement of important parameters. The first eight chapters of the book include a description of the rumen and its microbes, their activities, and the extent of these activities. This basic biology provides a framework in which applications to agriculture can be evaluated. These applications are discussed in the last four chapters: host metabolism, variation in the rumen, possible practical applications, and abnormalities in rumen function.
Functional Metagenomics: Tools and Applications
Author: Trevor C. Charles
Publisher: Springer
ISBN: 3319615106
Category : Science
Languages : en
Pages : 256
Book Description
In this book, the latest tools available for functional metagenomics research are described.This research enables scientists to directly access the genomes from diverse microbial genomes at one time and study these “metagenomes”. Using the modern tools of genome sequencing and cloning, researchers have now been able to harness this astounding metagenomic diversity to understand and exploit the diverse functions of microorganisms. Leading scientists from around the world demonstrate how these approaches have been applied in many different settings, including aquatic and terrestrial habitats, microbiomes, and many more environments. This is a highly informative and carefully presented book, providing microbiologists with a summary of the latest functional metagenomics literature on all specific habitats.
Publisher: Springer
ISBN: 3319615106
Category : Science
Languages : en
Pages : 256
Book Description
In this book, the latest tools available for functional metagenomics research are described.This research enables scientists to directly access the genomes from diverse microbial genomes at one time and study these “metagenomes”. Using the modern tools of genome sequencing and cloning, researchers have now been able to harness this astounding metagenomic diversity to understand and exploit the diverse functions of microorganisms. Leading scientists from around the world demonstrate how these approaches have been applied in many different settings, including aquatic and terrestrial habitats, microbiomes, and many more environments. This is a highly informative and carefully presented book, providing microbiologists with a summary of the latest functional metagenomics literature on all specific habitats.
Molecular Biology and Pathogenicity of Mycoplasmas
Author: Shmuel Razin
Publisher: Springer Science & Business Media
ISBN: 0306476061
Category : Science
Languages : en
Pages : 574
Book Description
was the result of the efforts of Robert Cleverdon. The rapidly developing discipline of molecular biology and the rapidly expanding knowledge of the PPLO were brought together at this meeting. In addition to the PPLO specialists, the conference invited Julius Marmur to compare PPLO DNA to DNA of other organisms; David Garfinkel, who was one of the first to develop computer models of metabolism; Cyrus Levinthal to talk about coding; and Henry Quastler to discuss information theory constraints on very small cells. The conference was an announcement of the role of PPLO in the fundamental understanding of molecular biology. Looking back 40-some years to the Connecticut meeting, it was a rather bold enterprise. The meeting was international and inter-disciplinary and began a series of important collaborations with influences resonating down to the present. If I may be allowed a personal remark, it was where I first met Shmuel Razin, who has been a leading figure in the emerging mycoplasma research and a good friend. This present volume is in some ways the fulfillment of the promise of that early meeting. It is an example of the collaborative work of scientists in building an understanding of fundamental aspects of biology.
Publisher: Springer Science & Business Media
ISBN: 0306476061
Category : Science
Languages : en
Pages : 574
Book Description
was the result of the efforts of Robert Cleverdon. The rapidly developing discipline of molecular biology and the rapidly expanding knowledge of the PPLO were brought together at this meeting. In addition to the PPLO specialists, the conference invited Julius Marmur to compare PPLO DNA to DNA of other organisms; David Garfinkel, who was one of the first to develop computer models of metabolism; Cyrus Levinthal to talk about coding; and Henry Quastler to discuss information theory constraints on very small cells. The conference was an announcement of the role of PPLO in the fundamental understanding of molecular biology. Looking back 40-some years to the Connecticut meeting, it was a rather bold enterprise. The meeting was international and inter-disciplinary and began a series of important collaborations with influences resonating down to the present. If I may be allowed a personal remark, it was where I first met Shmuel Razin, who has been a leading figure in the emerging mycoplasma research and a good friend. This present volume is in some ways the fulfillment of the promise of that early meeting. It is an example of the collaborative work of scientists in building an understanding of fundamental aspects of biology.
The New Science of Metagenomics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309106761
Category : Science
Languages : en
Pages : 170
Book Description
Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.
Publisher: National Academies Press
ISBN: 0309106761
Category : Science
Languages : en
Pages : 170
Book Description
Although we can't usually see them, microbes are essential for every part of human life-indeed all life on Earth. The emerging field of metagenomics offers a new way of exploring the microbial world that will transform modern microbiology and lead to practical applications in medicine, agriculture, alternative energy, environmental remediation, and many others areas. Metagenomics allows researchers to look at the genomes of all of the microbes in an environment at once, providing a "meta" view of the whole microbial community and the complex interactions within it. It's a quantum leap beyond traditional research techniques that rely on studying-one at a time-the few microbes that can be grown in the laboratory. At the request of the National Science Foundation, five Institutes of the National Institutes of Health, and the Department of Energy, the National Research Council organized a committee to address the current state of metagenomics and identify obstacles current researchers are facing in order to determine how to best support the field and encourage its success. The New Science of Metagenomics recommends the establishment of a "Global Metagenomics Initiative" comprising a small number of large-scale metagenomics projects as well as many medium- and small-scale projects to advance the technology and develop the standard practices needed to advance the field. The report also addresses database needs, methodological challenges, and the importance of interdisciplinary collaboration in supporting this new field.
The Science and Applications of Microbial Genomics
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309268192
Category : Science
Languages : en
Pages : 429
Book Description
Over the past several decades, new scientific tools and approaches for detecting microbial species have dramatically enhanced our appreciation of the diversity and abundance of the microbiota and its dynamic interactions with the environments within which these microorganisms reside. The first bacterial genome was sequenced in 1995 and took more than 13 months of work to complete. Today, a microorganism's entire genome can be sequenced in a few days. Much as our view of the cosmos was forever altered in the 17th century with the invention of the telescope, these genomic technologies, and the observations derived from them, have fundamentally transformed our appreciation of the microbial world around us. On June 12 and 13, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to discuss the scientific tools and approaches being used for detecting and characterizing microbial species, and the roles of microbial genomics and metagenomics to better understand the culturable and unculturable microbial world around us. Through invited presentations and discussions, participants examined the use of microbial genomics to explore the diversity, evolution, and adaptation of microorganisms in a wide variety of environments; the molecular mechanisms of disease emergence and epidemiology; and the ways that genomic technologies are being applied to disease outbreak trace back and microbial surveillance. Points that were emphasized by many participants included the need to develop robust standardized sampling protocols, the importance of having the appropriate metadata, data analysis and data management challenges, and information sharing in real time. The Science and Applications of Microbial Genomics summarizes this workshop.
Publisher: National Academies Press
ISBN: 0309268192
Category : Science
Languages : en
Pages : 429
Book Description
Over the past several decades, new scientific tools and approaches for detecting microbial species have dramatically enhanced our appreciation of the diversity and abundance of the microbiota and its dynamic interactions with the environments within which these microorganisms reside. The first bacterial genome was sequenced in 1995 and took more than 13 months of work to complete. Today, a microorganism's entire genome can be sequenced in a few days. Much as our view of the cosmos was forever altered in the 17th century with the invention of the telescope, these genomic technologies, and the observations derived from them, have fundamentally transformed our appreciation of the microbial world around us. On June 12 and 13, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats convened a public workshop in Washington, DC, to discuss the scientific tools and approaches being used for detecting and characterizing microbial species, and the roles of microbial genomics and metagenomics to better understand the culturable and unculturable microbial world around us. Through invited presentations and discussions, participants examined the use of microbial genomics to explore the diversity, evolution, and adaptation of microorganisms in a wide variety of environments; the molecular mechanisms of disease emergence and epidemiology; and the ways that genomic technologies are being applied to disease outbreak trace back and microbial surveillance. Points that were emphasized by many participants included the need to develop robust standardized sampling protocols, the importance of having the appropriate metadata, data analysis and data management challenges, and information sharing in real time. The Science and Applications of Microbial Genomics summarizes this workshop.
Rumen Microbiology: From Evolution to Revolution
Author: Anil Kumar Puniya
Publisher: Springer
ISBN: 8132224019
Category : Science
Languages : en
Pages : 380
Book Description
This book offers an in-depth description of different groups of microbes (i.e. bacteria, protozoa, fungi and viruses) that exist in the rumen microbial community, and offers an overview of rumen microbiology, the rumen microbial ecosystem of domesticated ruminants, and rumen microbial diversity. It provides the latest concepts on rumen microbiology for scholars, researchers and teachers of animal and veterinary sciences. With this goal in mind, throughout the text we focus on specific areas related to the biology and complex interactions of the microbes in rumen, integrating significant key issues in each respective area. We also discuss rumen manipulation with plant secondary metabolites, microbial feed additives, utilization of organic acids, selective inhibition of harmful rumen microbes, and ‘omics’ approaches to manipulating rumen microbial functions. A section on the exploration and exploitation of rumen microbes addresses topics including the current state of knowledge on rumen metagenomics, rumen: an underutilized niche for industrially important enzymes and ruminal fermentations to produce fuels. We next turn our attention to commercial applications of rumen microbial enzymes and to the molecular characterization of euryarcheal communities within an anaerobic digester. A section on intestinal disorders and rumen microbes covers acidosis in cattle, urea/ ammonia metabolism in the rumen and nitrate/ nitrite toxicity in ruminant diets. Last, the future prospects of rumen microbiology are examined, based on the latest developments in this area. In summary, the book offers a highly systematic collection of essential content on rumen microbiology.
Publisher: Springer
ISBN: 8132224019
Category : Science
Languages : en
Pages : 380
Book Description
This book offers an in-depth description of different groups of microbes (i.e. bacteria, protozoa, fungi and viruses) that exist in the rumen microbial community, and offers an overview of rumen microbiology, the rumen microbial ecosystem of domesticated ruminants, and rumen microbial diversity. It provides the latest concepts on rumen microbiology for scholars, researchers and teachers of animal and veterinary sciences. With this goal in mind, throughout the text we focus on specific areas related to the biology and complex interactions of the microbes in rumen, integrating significant key issues in each respective area. We also discuss rumen manipulation with plant secondary metabolites, microbial feed additives, utilization of organic acids, selective inhibition of harmful rumen microbes, and ‘omics’ approaches to manipulating rumen microbial functions. A section on the exploration and exploitation of rumen microbes addresses topics including the current state of knowledge on rumen metagenomics, rumen: an underutilized niche for industrially important enzymes and ruminal fermentations to produce fuels. We next turn our attention to commercial applications of rumen microbial enzymes and to the molecular characterization of euryarcheal communities within an anaerobic digester. A section on intestinal disorders and rumen microbes covers acidosis in cattle, urea/ ammonia metabolism in the rumen and nitrate/ nitrite toxicity in ruminant diets. Last, the future prospects of rumen microbiology are examined, based on the latest developments in this area. In summary, the book offers a highly systematic collection of essential content on rumen microbiology.
The Social Biology of Microbial Communities
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309264324
Category : Medical
Languages : en
Pages : 633
Book Description
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.
Publisher: National Academies Press
ISBN: 0309264324
Category : Medical
Languages : en
Pages : 633
Book Description
Beginning with the germ theory of disease in the 19th century and extending through most of the 20th century, microbes were believed to live their lives as solitary, unicellular, disease-causing organisms . This perception stemmed from the focus of most investigators on organisms that could be grown in the laboratory as cellular monocultures, often dispersed in liquid, and under ambient conditions of temperature, lighting, and humidity. Most such inquiries were designed to identify microbial pathogens by satisfying Koch's postulates.3 This pathogen-centric approach to the study of microorganisms produced a metaphorical "war" against these microbial invaders waged with antibiotic therapies, while simultaneously obscuring the dynamic relationships that exist among and between host organisms and their associated microorganisms-only a tiny fraction of which act as pathogens. Despite their obvious importance, very little is actually known about the processes and factors that influence the assembly, function, and stability of microbial communities. Gaining this knowledge will require a seismic shift away from the study of individual microbes in isolation to inquiries into the nature of diverse and often complex microbial communities, the forces that shape them, and their relationships with other communities and organisms, including their multicellular hosts. On March 6 and 7, 2012, the Institute of Medicine's (IOM's) Forum on Microbial Threats hosted a public workshop to explore the emerging science of the "social biology" of microbial communities. Workshop presentations and discussions embraced a wide spectrum of topics, experimental systems, and theoretical perspectives representative of the current, multifaceted exploration of the microbial frontier. Participants discussed ecological, evolutionary, and genetic factors contributing to the assembly, function, and stability of microbial communities; how microbial communities adapt and respond to environmental stimuli; theoretical and experimental approaches to advance this nascent field; and potential applications of knowledge gained from the study of microbial communities for the improvement of human, animal, plant, and ecosystem health and toward a deeper understanding of microbial diversity and evolution. The Social Biology of Microbial Communities: Workshop Summary further explains the happenings of the workshop.
Uncultivated Microorganisms
Author: Slava S. Epstein
Publisher: Springer Science & Business Media
ISBN: 3540854657
Category : Medical
Languages : en
Pages : 215
Book Description
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).
Publisher: Springer Science & Business Media
ISBN: 3540854657
Category : Medical
Languages : en
Pages : 215
Book Description
In 1898, an Austrian microbiologist Heinrich Winterberg made a curious observation: the number of microbial cells in his samples did not match the number of colonies formed on nutrient media (Winterberg 1898). About a decade later, J. Amann qu- tified this mismatch, which turned out to be surprisingly large, with non-growing cells outnumbering the cultivable ones almost 150 times (Amann 1911). These papers signify some of the earliest steps towards the discovery of an important phenomenon known today as the Great Plate Count Anomaly (Staley and Konopka 1985). Note how early in the history of microbiology these steps were taken. Detecting the Anomaly almost certainly required the Plate. If so, then the period from 1881 to 1887, the years when Robert Koch and Petri introduced their key inventions (Koch 1881; Petri 1887), sets the earliest boundary for the discovery, which is remarkably close to the 1898 observations by H. Winterberg. Celebrating its 111th anniversary, the Great Plate Count Anomaly today is arguably the oldest unresolved microbiological phenomenon. In the years to follow, the Anomaly was repeatedly confirmed by all microb- logists who cared to compare the cell count in the inoculum to the colony count in the Petri dish (cf., Cholodny 1929; Butkevich 1932; Butkevich and Butkevich 1936). By mid-century, the remarkable difference between the two counts became a universally recognized phenomenon, acknowledged by several classics of the time (Waksman and Hotchkiss 1937; ZoBell 1946; Jannasch and Jones 1959).