Author: Robert Gilmer
Publisher: University of Chicago Press
ISBN: 0226293920
Category : Mathematics
Languages : en
Pages : 392
Book Description
Commutative Semigroup Rings was the first exposition of the basic properties of semigroup rings. Gilmer concentrates on the interplay between semigroups and rings, thereby illuminating both of these important concepts in modern algebra.
Commutative Semigroup Rings
Author: Robert Gilmer
Publisher: University of Chicago Press
ISBN: 0226293920
Category : Mathematics
Languages : en
Pages : 392
Book Description
Commutative Semigroup Rings was the first exposition of the basic properties of semigroup rings. Gilmer concentrates on the interplay between semigroups and rings, thereby illuminating both of these important concepts in modern algebra.
Publisher: University of Chicago Press
ISBN: 0226293920
Category : Mathematics
Languages : en
Pages : 392
Book Description
Commutative Semigroup Rings was the first exposition of the basic properties of semigroup rings. Gilmer concentrates on the interplay between semigroups and rings, thereby illuminating both of these important concepts in modern algebra.
Commutative Semigroups
Author: P.A. Grillet
Publisher: Springer Science & Business Media
ISBN: 1475733895
Category : Mathematics
Languages : en
Pages : 443
Book Description
This is the first book about commutative semigroups in general. Emphasis is on structure but the other parts of the theory are at least surveyed and a full set of about 850 references is included. The book is intended for mathematicians who do research on semigroups or who encounter commutative semigroups in their research.
Publisher: Springer Science & Business Media
ISBN: 1475733895
Category : Mathematics
Languages : en
Pages : 443
Book Description
This is the first book about commutative semigroups in general. Emphasis is on structure but the other parts of the theory are at least surveyed and a full set of about 850 references is included. The book is intended for mathematicians who do research on semigroups or who encounter commutative semigroups in their research.
Finitely Generated Commutative Monoids
Author: J. C. Rosales
Publisher: Nova Publishers
ISBN: 9781560726708
Category : Mathematics
Languages : en
Pages : 204
Book Description
A textbook for an undergraduate course, requiring only a knowledge of basic linear algebra. Explains how to compute presentations for finitely generated cancellative monoids, and from a presentation of a monoid, decide whether this monoid is cancellative, reduced, separative, finite, torsion free, group, affine, full, normal, etc. Of most interest to people working with semigroup theory, but also in other areas of algebra. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: Nova Publishers
ISBN: 9781560726708
Category : Mathematics
Languages : en
Pages : 204
Book Description
A textbook for an undergraduate course, requiring only a knowledge of basic linear algebra. Explains how to compute presentations for finitely generated cancellative monoids, and from a presentation of a monoid, decide whether this monoid is cancellative, reduced, separative, finite, torsion free, group, affine, full, normal, etc. Of most interest to people working with semigroup theory, but also in other areas of algebra. Annotation copyrighted by Book News, Inc., Portland, OR
Algebraic Geometry and Commutative Algebra
Author: Hiroaki Hijikata
Publisher: Academic Press
ISBN: 1483265188
Category : Mathematics
Languages : en
Pages : 417
Book Description
Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata presents a collection of papers on algebraic geometry and commutative algebra in honor of Masayoshi Nagata for his significant contributions to commutative algebra. Topics covered range from power series rings and rings of invariants of finite linear groups to the convolution algebra of distributions on totally disconnected locally compact groups. The discussion begins with a description of several formulas for enumerating certain types of objects, which may be tabular arrangements of integers called Young tableaux or some types of monomials. The next chapter explains how to establish these enumerative formulas, with emphasis on the role played by transformations of determinantal polynomials and recurrence relations satisfied by them. The book then turns to several applications of the enumerative formulas and universal identity, including including enumerative proofs of the straightening law of Doubilet-Rota-Stein and computations of Hilbert functions of polynomial ideals of certain determinantal loci. Invariant differentials and quaternion extensions are also examined, along with the moduli of Todorov surfaces and the classification problem of embedded lines in characteristic p. This monograph will be a useful resource for practitioners and researchers in algebra and geometry.
Publisher: Academic Press
ISBN: 1483265188
Category : Mathematics
Languages : en
Pages : 417
Book Description
Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata presents a collection of papers on algebraic geometry and commutative algebra in honor of Masayoshi Nagata for his significant contributions to commutative algebra. Topics covered range from power series rings and rings of invariants of finite linear groups to the convolution algebra of distributions on totally disconnected locally compact groups. The discussion begins with a description of several formulas for enumerating certain types of objects, which may be tabular arrangements of integers called Young tableaux or some types of monomials. The next chapter explains how to establish these enumerative formulas, with emphasis on the role played by transformations of determinantal polynomials and recurrence relations satisfied by them. The book then turns to several applications of the enumerative formulas and universal identity, including including enumerative proofs of the straightening law of Doubilet-Rota-Stein and computations of Hilbert functions of polynomial ideals of certain determinantal loci. Invariant differentials and quaternion extensions are also examined, along with the moduli of Todorov surfaces and the classification problem of embedded lines in characteristic p. This monograph will be a useful resource for practitioners and researchers in algebra and geometry.
Cohen-Macaulay Rings
Author: Winfried Bruns
Publisher: Cambridge University Press
ISBN: 0521566746
Category : Mathematics
Languages : en
Pages : 471
Book Description
In the last two decades Cohen-Macaulay rings and modules have been central topics in commutative algebra. This book meets the need for a thorough, self-contained introduction to the homological and combinatorial aspects of the theory of Cohen-Macaulay rings, Gorenstein rings, local cohomology, and canonical modules. A separate chapter is devoted to Hilbert functions (including Macaulay's theorem) and numerical invariants derived from them. The authors emphasize the study of explicit, specific rings, making the presentation as concrete as possible. So the general theory is applied to Stanley-Reisner rings, semigroup rings, determinantal rings, and rings of invariants. Their connections with combinatorics are highlighted, e.g. Stanley's upper bound theorem or Ehrhart's reciprocity law for rational polytopes. The final chapters are devoted to Hochster's theorem on big Cohen-Macaulay modules and its applications, including Peskine-Szpiro's intersection theorem, the Evans-Griffith syzygy theorem, bounds for Bass numbers, and tight closure. Throughout each chapter the authors have supplied many examples and exercises which, combined with the expository style, will make the book very useful for graduate courses in algebra. As the only modern, broad account of the subject it will be essential reading for researchers in commutative algebra.
Publisher: Cambridge University Press
ISBN: 0521566746
Category : Mathematics
Languages : en
Pages : 471
Book Description
In the last two decades Cohen-Macaulay rings and modules have been central topics in commutative algebra. This book meets the need for a thorough, self-contained introduction to the homological and combinatorial aspects of the theory of Cohen-Macaulay rings, Gorenstein rings, local cohomology, and canonical modules. A separate chapter is devoted to Hilbert functions (including Macaulay's theorem) and numerical invariants derived from them. The authors emphasize the study of explicit, specific rings, making the presentation as concrete as possible. So the general theory is applied to Stanley-Reisner rings, semigroup rings, determinantal rings, and rings of invariants. Their connections with combinatorics are highlighted, e.g. Stanley's upper bound theorem or Ehrhart's reciprocity law for rational polytopes. The final chapters are devoted to Hochster's theorem on big Cohen-Macaulay modules and its applications, including Peskine-Szpiro's intersection theorem, the Evans-Griffith syzygy theorem, bounds for Bass numbers, and tight closure. Throughout each chapter the authors have supplied many examples and exercises which, combined with the expository style, will make the book very useful for graduate courses in algebra. As the only modern, broad account of the subject it will be essential reading for researchers in commutative algebra.
Group and Semigroup Rings
Author: G. Karpilovsky
Publisher: Elsevier
ISBN: 0080872379
Category : Mathematics
Languages : en
Pages : 277
Book Description
A broad range of topics is covered here, including commutative monoid rings, the Jacobson radical of semigroup rings, blocks of modular group algebras, nilpotency index of the radical of group algebras, the isomorphism problem for group rings, inverse semigroup algebras and the Picard group of an abelian group ring. The survey lectures provide an up-to-date account of the current state of the subject and form a comprehensive introduction for intending researchers.
Publisher: Elsevier
ISBN: 0080872379
Category : Mathematics
Languages : en
Pages : 277
Book Description
A broad range of topics is covered here, including commutative monoid rings, the Jacobson radical of semigroup rings, blocks of modular group algebras, nilpotency index of the radical of group algebras, the isomorphism problem for group rings, inverse semigroup algebras and the Picard group of an abelian group ring. The survey lectures provide an up-to-date account of the current state of the subject and form a comprehensive introduction for intending researchers.
Combinatorial Commutative Algebra
Author: Ezra Miller
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442
Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442
Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
The Algebraic Theory of Semigroups, Volume II
Author: Alfred Hoblitzelle Clifford
Publisher: American Mathematical Soc.
ISBN: 0821802720
Category : Group theory
Languages : en
Pages : 370
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821802720
Category : Group theory
Languages : en
Pages : 370
Book Description
Commutative Ring Theory
Author: Paul-Jean Cahen
Publisher: CRC Press
ISBN: 1000946762
Category : Mathematics
Languages : en
Pages : 489
Book Description
Presents the proceedings of the Second International Conference on Commutative Ring Theory in Fes, Morocco. The text details developments in commutative algebra, highlighting the theory of rings and ideals. It explores commutative algebra's connections with and applications to topological algebra and algebraic geometry.
Publisher: CRC Press
ISBN: 1000946762
Category : Mathematics
Languages : en
Pages : 489
Book Description
Presents the proceedings of the Second International Conference on Commutative Ring Theory in Fes, Morocco. The text details developments in commutative algebra, highlighting the theory of rings and ideals. It explores commutative algebra's connections with and applications to topological algebra and algebraic geometry.
Smarandache Near-Rings
Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233667
Category : Mathematics
Languages : en
Pages : 201
Book Description
Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).
Publisher: Infinite Study
ISBN: 1931233667
Category : Mathematics
Languages : en
Pages : 201
Book Description
Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday life, that's why we study them in this book. Thus, as a particular case: A Near-Ring is a non-empty set N together with two binary operations '+' and '.' such that (N, +) is a group (not necessarily abelian), (N, .) is a semigroup. For all a, b, c in N we have (a + b) . c = a . c + b . c. A Near-Field is a non-empty set P together with two binary operations '+' and '.' such that (P, +) is a group (not necessarily abelian), (P \ {0}, .) is a group. For all a, b, c I P we have (a + b) . c = a . c + b . c. A Smarandache Near-ring is a near-ring N which has a proper subset P in N, where P is a near-field (with respect to the same binary operations on N).