Author: Ştefan Ovidiu I. Tohăneanu
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111215385
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book aims to be a comprehensive treatise on the interactions between Coding Theory and Commutative Algebra. With the help of a multitude of examples, it expands and systematizes the known and versatile commutative algebraic framework used, since the early 90’s, to study linear codes. The book provides the necessary background for the reader to advance with similar research on coding theory topics from commutative algebraic perspectives.
Commutative Algebra Methods for Coding Theory
Author: Ştefan Ovidiu I. Tohăneanu
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111215385
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book aims to be a comprehensive treatise on the interactions between Coding Theory and Commutative Algebra. With the help of a multitude of examples, it expands and systematizes the known and versatile commutative algebraic framework used, since the early 90’s, to study linear codes. The book provides the necessary background for the reader to advance with similar research on coding theory topics from commutative algebraic perspectives.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111215385
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book aims to be a comprehensive treatise on the interactions between Coding Theory and Commutative Algebra. With the help of a multitude of examples, it expands and systematizes the known and versatile commutative algebraic framework used, since the early 90’s, to study linear codes. The book provides the necessary background for the reader to advance with similar research on coding theory topics from commutative algebraic perspectives.
Commutative Algebra Methods for Coding Theory
Author: Ştefan Ovidiu I. Tohăneanu
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111214796
Category : Mathematics
Languages : en
Pages : 276
Book Description
This book aims to be a comprehensive treatise on the interactions between Coding Theory and Commutative Algebra. With the help of a multitude of examples, it expands and systematizes the known and versatile commutative algebraic framework used, since the early 90’s, to study linear codes. The book provides the necessary background for the reader to advance with similar research on coding theory topics from commutative algebraic perspectives.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3111214796
Category : Mathematics
Languages : en
Pages : 276
Book Description
This book aims to be a comprehensive treatise on the interactions between Coding Theory and Commutative Algebra. With the help of a multitude of examples, it expands and systematizes the known and versatile commutative algebraic framework used, since the early 90’s, to study linear codes. The book provides the necessary background for the reader to advance with similar research on coding theory topics from commutative algebraic perspectives.
Commutative Algebra Methods for Coding Theory
Author: Stefan Ovidiu Tohaneanu
Publisher:
ISBN: 9783111212920
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book aims to be a comprehensive treatise on the interactions between Coding Theory and Commutative Algebra. With the help of a multitude of examples, it expands and systematizes the known and versatile commutative algebraic framework used, since the early 90's, to study linear codes. The book provides the necessary background for the reader to advance with similar research on coding theory topics from commutative algebraic perspectives.
Publisher:
ISBN: 9783111212920
Category : Mathematics
Languages : en
Pages : 0
Book Description
This book aims to be a comprehensive treatise on the interactions between Coding Theory and Commutative Algebra. With the help of a multitude of examples, it expands and systematizes the known and versatile commutative algebraic framework used, since the early 90's, to study linear codes. The book provides the necessary background for the reader to advance with similar research on coding theory topics from commutative algebraic perspectives.
Using Algebraic Geometry
Author: David A. Cox
Publisher: Springer Science & Business Media
ISBN: 1475769113
Category : Mathematics
Languages : en
Pages : 513
Book Description
An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Publisher: Springer Science & Business Media
ISBN: 1475769113
Category : Mathematics
Languages : en
Pages : 513
Book Description
An illustration of the many uses of algebraic geometry, highlighting the more recent applications of Groebner bases and resultants. Along the way, the authors provide an introduction to some algebraic objects and techniques more advanced than typically encountered in a first course. The book is accessible to non-specialists and to readers with a diverse range of backgrounds, assuming readers know the material covered in standard undergraduate courses, including abstract algebra. But because the text is intended for beginning graduate students, it does not require graduate algebra, and in particular, does not assume that the reader is familiar with modules.
Computational Commutative Algebra 1
Author: Martin Kreuzer
Publisher: Springer Science & Business Media
ISBN: 354067733X
Category : Mathematics
Languages : en
Pages : 325
Book Description
This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.
Publisher: Springer Science & Business Media
ISBN: 354067733X
Category : Mathematics
Languages : en
Pages : 325
Book Description
This introduction to polynomial rings, Gröbner bases and applications bridges the gap in the literature between theory and actual computation. It details numerous applications, covering fields as disparate as algebraic geometry and financial markets. To aid in a full understanding of these applications, more than 40 tutorials illustrate how the theory can be used. The book also includes many exercises, both theoretical and practical.
Combinatorial Commutative Algebra
Author: Ezra Miller
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442
Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Publisher: Springer Science & Business Media
ISBN: 9780387237077
Category : Mathematics
Languages : en
Pages : 442
Book Description
Recent developments are covered Contains over 100 figures and 250 exercises Includes complete proofs
Computational Invariant Theory
Author: Harm Derksen
Publisher: Springer Science & Business Media
ISBN: 3662049589
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
Publisher: Springer Science & Business Media
ISBN: 3662049589
Category : Mathematics
Languages : en
Pages : 272
Book Description
This book, the first volume of a subseries on "Invariant Theory and Algebraic Transformation Groups", provides a comprehensive and up-to-date overview of the algorithmic aspects of invariant theory. Numerous illustrative examples and a careful selection of proofs make the book accessible to non-specialists.
Applications of Algebraic Geometry to Coding Theory, Physics and Computation
Author: Ciro Ciliberto
Publisher: Springer Science & Business Media
ISBN: 9401010110
Category : Mathematics
Languages : en
Pages : 343
Book Description
An up-to-date report on the current status of important research topics in algebraic geometry and its applications, such as computational algebra and geometry, singularity theory algorithms, numerical solutions of polynomial systems, coding theory, communication networks, and computer vision. Contributions on more fundamental aspects of algebraic geometry include expositions related to counting points on varieties over finite fields, Mori theory, linear systems, Abelian varieties, vector bundles on singular curves, degenerations of surfaces, and mirror symmetry of Calabi-Yau manifolds.
Publisher: Springer Science & Business Media
ISBN: 9401010110
Category : Mathematics
Languages : en
Pages : 343
Book Description
An up-to-date report on the current status of important research topics in algebraic geometry and its applications, such as computational algebra and geometry, singularity theory algorithms, numerical solutions of polynomial systems, coding theory, communication networks, and computer vision. Contributions on more fundamental aspects of algebraic geometry include expositions related to counting points on varieties over finite fields, Mori theory, linear systems, Abelian varieties, vector bundles on singular curves, degenerations of surfaces, and mirror symmetry of Calabi-Yau manifolds.
Computational Commutative Algebra 2
Author: Martin Kreuzer
Publisher: Springer Science & Business Media
ISBN: 3540255273
Category : Mathematics
Languages : en
Pages : 592
Book Description
"The second volume of the authors’ ‘Computational commutative algebra’...covers on its 586 pages a wealth of interesting material with several unexpected applications. ... an encyclopedia on computational commutative algebra, a source for lectures on the subject as well as an inspiration for seminars. The text is recommended for all those who want to learn and enjoy an algebraic tool that becomes more and more relevant to different fields of applications." --ZENTRALBLATT MATH
Publisher: Springer Science & Business Media
ISBN: 3540255273
Category : Mathematics
Languages : en
Pages : 592
Book Description
"The second volume of the authors’ ‘Computational commutative algebra’...covers on its 586 pages a wealth of interesting material with several unexpected applications. ... an encyclopedia on computational commutative algebra, a source for lectures on the subject as well as an inspiration for seminars. The text is recommended for all those who want to learn and enjoy an algebraic tool that becomes more and more relevant to different fields of applications." --ZENTRALBLATT MATH
The Mathematical Theory of Coding
Author: Ian F. Blake
Publisher: Academic Press
ISBN: 1483260593
Category : Mathematics
Languages : en
Pages : 369
Book Description
The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.
Publisher: Academic Press
ISBN: 1483260593
Category : Mathematics
Languages : en
Pages : 369
Book Description
The Mathematical Theory of Coding focuses on the application of algebraic and combinatoric methods to the coding theory, including linear transformations, vector spaces, and combinatorics. The publication first offers information on finite fields and coding theory and combinatorial constructions and coding. Discussions focus on self-dual and quasicyclic codes, quadratic residues and codes, balanced incomplete block designs and codes, bounds on code dictionaries, code invariance under permutation groups, and linear transformations of vector spaces over finite fields. The text then takes a look at coding and combinatorics and the structure of semisimple rings. Topics include structure of cyclic codes and semisimple rings, group algebra and group characters, rings, ideals, and the minimum condition, chains and chain groups, dual chain groups, and matroids, graphs, and coding. The book ponders on group representations and group codes for the Gaussian channel, including distance properties of group codes, initial vector problem, modules, group algebras, andrepresentations, orthogonality relationships and properties of group characters, and representation of groups. The manuscript is a valuable source of data for mathematicians and researchers interested in the mathematical theory of coding.