Combinatorial Convexity and Algebraic Geometry

Combinatorial Convexity and Algebraic Geometry PDF Author: Günter Ewald
Publisher: Springer Science & Business Media
ISBN: 1461240441
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

Combinatorial Convexity and Algebraic Geometry

Combinatorial Convexity and Algebraic Geometry PDF Author: Günter Ewald
Publisher: Springer Science & Business Media
ISBN: 1461240441
Category : Mathematics
Languages : en
Pages : 378

Get Book Here

Book Description
The book is an introduction to the theory of convex polytopes and polyhedral sets, to algebraic geometry, and to the connections between these fields, known as the theory of toric varieties. The first part of the book covers the theory of polytopes and provides large parts of the mathematical background of linear optimization and of the geometrical aspects in computer science. The second part introduces toric varieties in an elementary way.

Combinatorial Algebraic Geometry

Combinatorial Algebraic Geometry PDF Author: Gregory G. Smith
Publisher: Springer
ISBN: 1493974866
Category : Mathematics
Languages : en
Pages : 391

Get Book Here

Book Description
This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.

Combinatorial Convexity and Algebraic Geometry

Combinatorial Convexity and Algebraic Geometry PDF Author: Günter Ewald
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Semidefinite Optimization and Convex Algebraic Geometry

Semidefinite Optimization and Convex Algebraic Geometry PDF Author: Grigoriy Blekherman
Publisher: SIAM
ISBN: 1611972280
Category : Mathematics
Languages : en
Pages : 487

Get Book Here

Book Description
An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.

Excursions into Combinatorial Geometry

Excursions into Combinatorial Geometry PDF Author: Vladimir Boltyanski
Publisher: Springer Science & Business Media
ISBN: 3642592376
Category : Mathematics
Languages : en
Pages : 428

Get Book Here

Book Description
siehe Werbetext.

Foundations of Convex Geometry

Foundations of Convex Geometry PDF Author: W. A. Coppel
Publisher: Cambridge University Press
ISBN: 9780521639705
Category : Mathematics
Languages : en
Pages : 236

Get Book Here

Book Description
This book on the foundations of Euclidean geometry aims to present the subject from the point of view of present day mathematics, taking advantage of all the developments since the appearance of Hilbert's classic work. Here real affine space is characterised by a small number of axioms involving points and line segments making the treatment self-contained and thorough, many results being established under weaker hypotheses than usual. The treatment should be totally accessible for final year undergraduates and graduate students, and can also serve as an introduction to other areas of mathematics such as matroids and antimatroids, combinatorial convexity, the theory of polytopes, projective geometry and functional analysis.

Combinatorial and Computational Geometry

Combinatorial and Computational Geometry PDF Author: Jacob E. Goodman
Publisher: Cambridge University Press
ISBN: 9780521848626
Category : Computers
Languages : en
Pages : 640

Get Book Here

Book Description
This 2005 book deals with interest topics in Discrete and Algorithmic aspects of Geometry.

Geometric Algorithms and Combinatorial Optimization

Geometric Algorithms and Combinatorial Optimization PDF Author: Martin Grötschel
Publisher: Springer Science & Business Media
ISBN: 3642978819
Category : Mathematics
Languages : en
Pages : 374

Get Book Here

Book Description
Historically, there is a close connection between geometry and optImization. This is illustrated by methods like the gradient method and the simplex method, which are associated with clear geometric pictures. In combinatorial optimization, however, many of the strongest and most frequently used algorithms are based on the discrete structure of the problems: the greedy algorithm, shortest path and alternating path methods, branch-and-bound, etc. In the last several years geometric methods, in particular polyhedral combinatorics, have played a more and more profound role in combinatorial optimization as well. Our book discusses two recent geometric algorithms that have turned out to have particularly interesting consequences in combinatorial optimization, at least from a theoretical point of view. These algorithms are able to utilize the rich body of results in polyhedral combinatorics. The first of these algorithms is the ellipsoid method, developed for nonlinear programming by N. Z. Shor, D. B. Yudin, and A. S. NemirovskiI. It was a great surprise when L. G. Khachiyan showed that this method can be adapted to solve linear programs in polynomial time, thus solving an important open theoretical problem. While the ellipsoid method has not proved to be competitive with the simplex method in practice, it does have some features which make it particularly suited for the purposes of combinatorial optimization. The second algorithm we discuss finds its roots in the classical "geometry of numbers", developed by Minkowski. This method has had traditionally deep applications in number theory, in particular in diophantine approximation.

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes

Algebraic And Geometric Combinatorics On Lattice Polytopes - Proceedings Of The Summer Workshop On Lattice Polytopes PDF Author: Takayuki Hibi
Publisher: World Scientific
ISBN: 9811200491
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
This volume consists of research papers and expository survey articles presented by the invited speakers of the Summer Workshop on Lattice Polytopes. Topics include enumerative, algebraic and geometric combinatorics on lattice polytopes, topological combinatorics, commutative algebra and toric varieties.Readers will find that this volume showcases current trends on lattice polytopes and stimulates further developments of many research areas surrounding this field. With the survey articles, research papers and open problems, this volume provides its fundamental materials for graduate students to learn and researchers to find exciting activities and avenues for further exploration on lattice polytopes.

Problems in Analytic Number Theory

Problems in Analytic Number Theory PDF Author: M. Ram Murty
Publisher: Springer Science & Business Media
ISBN: 0387723501
Category : Mathematics
Languages : en
Pages : 508

Get Book Here

Book Description
This informative and exhaustive study gives a problem-solving approach to the difficult subject of analytic number theory. It is primarily aimed at graduate students and senior undergraduates. The goal is to provide a rapid introduction to analytic methods and the ways in which they are used to study the distribution of prime numbers. The book also includes an introduction to p-adic analytic methods. It is ideal for a first course in analytic number theory. The new edition has been completely rewritten, errors have been corrected, and there is a new chapter on the arithmetic progression of primes.