Author: A. B. Katok
Publisher: American Mathematical Soc.
ISBN: 0821834967
Category : Mathematics
Languages : en
Pages : 127
Book Description
Ergodic theory studies measure-preserving transformations of measure spaces. These objects are intrinsically infinite, and the notion of an individual point or of an orbit makes no sense. Still there are a variety of situations when a measure preserving transformation (and its asymptotic behavior) can be well described as a limit of certain finite objects (periodic processes). The first part of this book develops this idea systematically. Genericity of approximation in various categories is explored, and numerous applications are presented, including spectral multiplicity and properties of the maximal spectral type. The second part of the book contains a treatment of various constructions of cohomological nature with an emphasis on obtaining interesting asymptotic behavior from approximate pictures at different time scales. The book presents a view of ergodic theory not found in other expository sources. It is suitable for graduate students familiar with measure theory and basic functional analysis.
Combinatorial Constructions in Ergodic Theory and Dynamics
Author: A. B. Katok
Publisher: American Mathematical Soc.
ISBN: 0821834967
Category : Mathematics
Languages : en
Pages : 127
Book Description
Ergodic theory studies measure-preserving transformations of measure spaces. These objects are intrinsically infinite, and the notion of an individual point or of an orbit makes no sense. Still there are a variety of situations when a measure preserving transformation (and its asymptotic behavior) can be well described as a limit of certain finite objects (periodic processes). The first part of this book develops this idea systematically. Genericity of approximation in various categories is explored, and numerous applications are presented, including spectral multiplicity and properties of the maximal spectral type. The second part of the book contains a treatment of various constructions of cohomological nature with an emphasis on obtaining interesting asymptotic behavior from approximate pictures at different time scales. The book presents a view of ergodic theory not found in other expository sources. It is suitable for graduate students familiar with measure theory and basic functional analysis.
Publisher: American Mathematical Soc.
ISBN: 0821834967
Category : Mathematics
Languages : en
Pages : 127
Book Description
Ergodic theory studies measure-preserving transformations of measure spaces. These objects are intrinsically infinite, and the notion of an individual point or of an orbit makes no sense. Still there are a variety of situations when a measure preserving transformation (and its asymptotic behavior) can be well described as a limit of certain finite objects (periodic processes). The first part of this book develops this idea systematically. Genericity of approximation in various categories is explored, and numerous applications are presented, including spectral multiplicity and properties of the maximal spectral type. The second part of the book contains a treatment of various constructions of cohomological nature with an emphasis on obtaining interesting asymptotic behavior from approximate pictures at different time scales. The book presents a view of ergodic theory not found in other expository sources. It is suitable for graduate students familiar with measure theory and basic functional analysis.
Ergodic Theory
Author: Cesar E. Silva
Publisher: Springer Nature
ISBN: 1071623885
Category : Mathematics
Languages : en
Pages : 707
Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras
Publisher: Springer Nature
ISBN: 1071623885
Category : Mathematics
Languages : en
Pages : 707
Book Description
This volume in the Encyclopedia of Complexity and Systems Science, Second Edition, covers recent developments in classical areas of ergodic theory, including the asymptotic properties of measurable dynamical systems, spectral theory, entropy, ergodic theorems, joinings, isomorphism theory, recurrence, nonsingular systems. It enlightens connections of ergodic theory with symbolic dynamics, topological dynamics, smooth dynamics, combinatorics, number theory, pressure and equilibrium states, fractal geometry, chaos. In addition, the new edition includes dynamical systems of probabilistic origin, ergodic aspects of Sarnak's conjecture, translation flows on translation surfaces, complexity and classification of measurable systems, operator approach to asymptotic properties, interplay with operator algebras
Polynomial Methods in Combinatorics
Author: Larry Guth
Publisher: American Mathematical Soc.
ISBN: 1470428903
Category : Mathematics
Languages : en
Pages : 287
Book Description
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.
Publisher: American Mathematical Soc.
ISBN: 1470428903
Category : Mathematics
Languages : en
Pages : 287
Book Description
This book explains some recent applications of the theory of polynomials and algebraic geometry to combinatorics and other areas of mathematics. One of the first results in this story is a short elegant solution of the Kakeya problem for finite fields, which was considered a deep and difficult problem in combinatorial geometry. The author also discusses in detail various problems in incidence geometry associated to Paul Erdős's famous distinct distances problem in the plane from the 1940s. The proof techniques are also connected to error-correcting codes, Fourier analysis, number theory, and differential geometry. Although the mathematics discussed in the book is deep and far-reaching, it should be accessible to first- and second-year graduate students and advanced undergraduates. The book contains approximately 100 exercises that further the reader's understanding of the main themes of the book.
Chapel Hill Ergodic Theory Workshops
Author: Idris Assani
Publisher: American Mathematical Soc.
ISBN: 0821833138
Category : Mathematics
Languages : en
Pages : 184
Book Description
This volume grew out of two ergodic theory workshops held at the University of North Carolina at Chapel Hill. These events gave young researchers an introduction to active research areas and promoted interaction between young and established mathematicians. Included are research and survey articles devoted to various topics in ergodic theory. The book is suitable for graduate students and researchers interested in these and related areas.
Publisher: American Mathematical Soc.
ISBN: 0821833138
Category : Mathematics
Languages : en
Pages : 184
Book Description
This volume grew out of two ergodic theory workshops held at the University of North Carolina at Chapel Hill. These events gave young researchers an introduction to active research areas and promoted interaction between young and established mathematicians. Included are research and survey articles devoted to various topics in ergodic theory. The book is suitable for graduate students and researchers interested in these and related areas.
Substitutions in Dynamics, Arithmetics and Combinatorics
Author: N. Pytheas Fogg
Publisher: Springer
ISBN: 3540457143
Category : Mathematics
Languages : en
Pages : 411
Book Description
A certain category of infinite strings of letters on a finite alphabet is presented here, chosen among the 'simplest' possible one may build, both because they are very deterministic and because they are built by simple rules (a letter is replaced by a word, a sequence is produced by iteration). These substitutive sequences have a surprisingly rich structure. The authors describe the concepts of quantity of natural interactions, with combinatorics on words, ergodic theory, linear algebra, spectral theory, geometry of tilings, theoretical computer science, diophantine approximation, trancendence, graph theory. This volume fulfils the need for a reference on the basic definitions and theorems, as well as for a state-of-the-art survey of the more difficult and unsolved problems.
Publisher: Springer
ISBN: 3540457143
Category : Mathematics
Languages : en
Pages : 411
Book Description
A certain category of infinite strings of letters on a finite alphabet is presented here, chosen among the 'simplest' possible one may build, both because they are very deterministic and because they are built by simple rules (a letter is replaced by a word, a sequence is produced by iteration). These substitutive sequences have a surprisingly rich structure. The authors describe the concepts of quantity of natural interactions, with combinatorics on words, ergodic theory, linear algebra, spectral theory, geometry of tilings, theoretical computer science, diophantine approximation, trancendence, graph theory. This volume fulfils the need for a reference on the basic definitions and theorems, as well as for a state-of-the-art survey of the more difficult and unsolved problems.
Smooth Ergodic Theory and Its Applications
Author: A. B. Katok
Publisher: American Mathematical Soc.
ISBN: 0821826824
Category : Mathematics
Languages : en
Pages : 895
Book Description
During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.
Publisher: American Mathematical Soc.
ISBN: 0821826824
Category : Mathematics
Languages : en
Pages : 895
Book Description
During the past decade, there have been several major new developments in smooth ergodic theory, which have attracted substantial interest to the field from mathematicians as well as scientists using dynamics in their work. In spite of the impressive literature, it has been extremely difficult for a student-or even an established mathematician who is not an expert in the area-to acquire a working knowledge of smooth ergodic theory and to learn how to use its tools. Accordingly, the AMS Summer Research Institute on Smooth Ergodic Theory and Its Applications (Seattle, WA) had a strong educational component, including ten mini-courses on various aspects of the topic that were presented by leading experts in the field. This volume presents the proceedings of that conference. Smooth ergodic theory studies the statistical properties of differentiable dynamical systems, whose origin traces back to the seminal works of Poincare and later, many great mathematicians who made contributions to the development of the theory. The main topic of this volume, smooth ergodic theory, especially the theory of nonuniformly hyperbolic systems, provides the principle paradigm for the rigorous study of complicated or chaotic behavior in deterministic systems. This paradigm asserts that if a non-linear dynamical system exhibits sufficiently pronounced exponential behavior, then global properties of the system can be deduced from studying the linearized system. One can then obtain detailed information on topological properties (such as the growth of periodic orbits, topological entropy, and dimension of invariant sets including attractors), as well as statistical properties (such as the existence of invariant measures, asymptotic behavior of typical orbits, ergodicity, mixing, decay of corre This volume serves a two-fold purpose: first, it gives a useful gateway to smooth ergodic theory for students and nonspecialists, and second, it provides a state-of-the-art report on important current aspects of the subject. The book is divided into three parts: lecture notes consisting of three long expositions with proofs aimed to serve as a comprehensive and self-contained introduction to a particular area of smooth ergodic theory; thematic sections based on mini-courses or surveys held at the conference; and original contributions presented at the meeting or closely related to the topics that were discussed there.
Recurrence in Ergodic Theory and Combinatorial Number Theory
Author: Harry Furstenberg
Publisher: Princeton University Press
ISBN: 1400855160
Category : Mathematics
Languages : en
Pages : 216
Book Description
Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400855160
Category : Mathematics
Languages : en
Pages : 216
Book Description
Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the 1974 European Meeting of Statisticians
Author: J. Kozesnik
Publisher: Springer Science & Business Media
ISBN: 9401099103
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
The Prague Conferences on Information Theory, Statistical Decision Functions, and Random Processes have been organized every three years since 1956. During the eighteen years of their existence the Prague Conferences developed from a platform for presenting results obtained by a small group of researchers into a probabilistic congress, this being documented by the increasing number of participants as well as of presented papers. The importance of the Seventh Prague Conference has been emphasized by the fact that this Conference was held jointly with the eighth European Meeting of Statisticians. This joint meeting was held from August 18 to 23, 1974 at the Technical University of Prague. The Conference was organized by the Institute of Information Theory and Automation of the Czechoslovak Academy of Sciences and was sponsored by the Czechoslovak Academy of Sciences, by the Committee for the European Region of the Institute of Mathematical Statistics, and by the International As sociation for Statistics in Physical Sciences. More than 300 specialists from 25 countries participated in the Conference. In 57 sessions 164 papers (including 17 invited papers) were read, 128 of which are published in the present two volumes of the Transactions of the Conference. Volume A includes papers related mainly to probability theory and stochastic processes, whereas the papers of Volume B concern mainly statistics and information theory.
Publisher: Springer Science & Business Media
ISBN: 9401099103
Category : Technology & Engineering
Languages : en
Pages : 577
Book Description
The Prague Conferences on Information Theory, Statistical Decision Functions, and Random Processes have been organized every three years since 1956. During the eighteen years of their existence the Prague Conferences developed from a platform for presenting results obtained by a small group of researchers into a probabilistic congress, this being documented by the increasing number of participants as well as of presented papers. The importance of the Seventh Prague Conference has been emphasized by the fact that this Conference was held jointly with the eighth European Meeting of Statisticians. This joint meeting was held from August 18 to 23, 1974 at the Technical University of Prague. The Conference was organized by the Institute of Information Theory and Automation of the Czechoslovak Academy of Sciences and was sponsored by the Czechoslovak Academy of Sciences, by the Committee for the European Region of the Institute of Mathematical Statistics, and by the International As sociation for Statistics in Physical Sciences. More than 300 specialists from 25 countries participated in the Conference. In 57 sessions 164 papers (including 17 invited papers) were read, 128 of which are published in the present two volumes of the Transactions of the Conference. Volume A includes papers related mainly to probability theory and stochastic processes, whereas the papers of Volume B concern mainly statistics and information theory.
Robert Steinberg
Author: Robert Steinberg
Publisher: American Mathematical Soc.
ISBN: 147043105X
Category : Mathematics
Languages : en
Pages : 175
Book Description
Robert Steinberg's Lectures on Chevalley Groups were delivered and written during the author's sabbatical visit to Yale University in the 1967–1968 academic year. The work presents the status of the theory of Chevalley groups as it was in the mid-1960s. Much of this material was instrumental in many areas of mathematics, in particular in the theory of algebraic groups and in the subsequent classification of finite groups. This posthumous edition incorporates additions and corrections prepared by the author during his retirement, including a new introductory chapter. A bibliography and editorial notes have also been added.
Publisher: American Mathematical Soc.
ISBN: 147043105X
Category : Mathematics
Languages : en
Pages : 175
Book Description
Robert Steinberg's Lectures on Chevalley Groups were delivered and written during the author's sabbatical visit to Yale University in the 1967–1968 academic year. The work presents the status of the theory of Chevalley groups as it was in the mid-1960s. Much of this material was instrumental in many areas of mathematics, in particular in the theory of algebraic groups and in the subsequent classification of finite groups. This posthumous edition incorporates additions and corrections prepared by the author during his retirement, including a new introductory chapter. A bibliography and editorial notes have also been added.
Operator Theoretic Aspects of Ergodic Theory
Author: Tanja Eisner
Publisher: Springer
ISBN: 3319168983
Category : Mathematics
Languages : en
Pages : 630
Book Description
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory
Publisher: Springer
ISBN: 3319168983
Category : Mathematics
Languages : en
Pages : 630
Book Description
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory