Color Centers in Semiconductors for Quantum Applications

Color Centers in Semiconductors for Quantum Applications PDF Author: Joel Davidsson
Publisher: Linköping University Electronic Press
ISBN: 9179297307
Category :
Languages : en
Pages : 90

Get Book Here

Book Description
Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.

Color Centers in Semiconductors for Quantum Applications

Color Centers in Semiconductors for Quantum Applications PDF Author: Joel Davidsson
Publisher: Linköping University Electronic Press
ISBN: 9179297307
Category :
Languages : en
Pages : 90

Get Book Here

Book Description
Point defects in semiconductors have been and will continue to be relevant for applications. Shallow defects realize transistors, which power the modern age of information, and in the not-too-distant future, deep-level defects could provide the foundation for a revolution in quantum information processing. Deep-level defects (in particular color centers) are also of interest for other applications such as a single photon emitter, especially one that emits at 1550 nm, which is the optimal frequency for long-range communication via fiber optics. First-principle calculations can predict the energies and optical properties of point defects. I performed extensive convergence tests for magneto-optical properties, such as zero phonon lines, hyperfine coupling parameters, and zero-field splitting for the four different configurations of the divacancy in 4H-SiC. Comparing the converged results with experimental measurements, a clear identification of the different configurations was made. With this approach, I also identified all configurations for the silicon vacancy in 4H-SiC as well as the divacancy and silicon vacancy in 6H-SiC. The same method was further used to identify two additional configurations belonging to the divacancy present in a 3C stacking fault inclusion in 4H-SiC. I extended the calculated properties to include the transition dipole moment which provides the polarization, intensity, and lifetime of the zero phonon lines. When calculating the transition dipole moment, I show that it is crucial to include the self-consistent change of the electronic orbitals in the excited state due to the geometry relaxation. I tested the method on the divacancy in 4H-SiC, further strengthening the previous identification and providing accurate photoluminescence intensities and lifetimes. Finding stable point defects with the right properties for a given application is a challenging task. Due to the vast number of possible point defects present in bulk semiconductor materials, I designed and implemented a collection of automatic workflows to systematically investigate any point defects. This collection is called ADAQ (Automatic Defect Analysis and Qualification) and automates every step of the theoretical process, from creating defects to predicting their properties. Using ADAQ, I screened about 8000 intrinsic point defect clusters in 4H-SiC. This thesis presents an overview of the formation energy and the most relevant optical properties for these single and double point defects. These results show great promise for finding new color centers suitable for various quantum applications.

Diamond for Quantum Applications Part 1

Diamond for Quantum Applications Part 1 PDF Author:
Publisher: Academic Press
ISBN: 0128202416
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
Diamond for Quantum Applications Part 1, Volume 103, the latest release in the Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Semiconductors and Semimetals series - Updated release includes the latest information on the use of diamonds for quantum applications

Domestic Manufacturing Capabilities for Critical DoD Applications

Domestic Manufacturing Capabilities for Critical DoD Applications PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309494796
Category : Computers
Languages : en
Pages : 109

Get Book Here

Book Description
Recent advancements in quantum-enabled systems present a variety of new opportunities and challenges. These technologies are important developments for a variety of computing, communications, and sensing applications. However, many materials and components relevant to quantum-enabled systems exist outside of the United States, and it is important to promote the development of assured domestic sources of materials, manufacturing capabilities, and expertise. The National Academies of Sciences, Engineering, and Medicine convened a 2-day workshop to explore implications and concerns related to the application of quantum-enabled systems in the United States. This workshop focused on quantum-enabled computing systems, quantum communications and networks, and quantum sensing opportunities. Participants explored the path to quantum computing, communications, and networks, opportunities for collaboration, as well as key gaps, supply chain concerns, and security issues. This publication summarizes the presentations and discussions from the workshop.

Diamond for Quantum Applications Part 2

Diamond for Quantum Applications Part 2 PDF Author:
Publisher: Academic Press
ISBN: 0323850251
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
Diamond for Quantum Applications Part Two, Volume 104, the latest release in the Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics including Color center formation by deterministic single ion implantation, Diamond and Its Investigation by Advanced TEM, Fundaments of photo-electric readout of spin states in diamond, Integrated quantum photonic circuits with polycrystalline diamond, Diamond Membranes, and Diamond nanophotonic and opt mechanics. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Semiconductors and Semimetals series - Updated release includes the latest information on the use of diamonds for quantum applications

Fluorescent Nanodiamonds

Fluorescent Nanodiamonds PDF Author: Huan-Cheng Chang
Publisher: John Wiley & Sons
ISBN: 1119477085
Category : Science
Languages : en
Pages : 294

Get Book Here

Book Description
The most comprehensive reference on fluorescent nanodiamond physical and chemical properties and contemporary applications Fluorescent nanodiamonds (FNDs) have drawn a great deal of attention over the past several years, and their applications and development potential are proving to be manifold and vast. The first and only book of its kind, Fluorescent Nanodiamonds is a comprehensive guide to the basic science and technical information needed to fully understand the fundamentals of FNDs and their potential applications across an array of domains. In demonstrating the importance of FNDs in biological applications, the authors bring together all relevant chemistry, physics, materials science and biology. Nanodiamonds are produced by powerful cataclysmic events such as explosions, volcanic eruptions and meteorite impacts. They also can be created in the lab by high-pressure high-temperature treatment of graphite or detonating an explosive in a reactor vessel. A single imperfection can give a nanodiamond a specific, isolated color center which allows it to function as a single, trapped atom. Much smaller than the thickness of a human hair, a nanodiamond can have a huge surface area that allows it to bond with a variety of other materials. Because of their non-toxicity, nanodiamonds may be useful in biomedical applications, such as drug delivery and gene therapy. The most comprehensive reference on a topic of rapidly increasing interest among academic and industrial researchers across an array of fields Includes numerous case studies and practical examples from many areas of research and industrial applications, as well as fascinating and instructive historical perspectives Each chapter addresses, in-depth, a single integral topic including the fundamental properties, synthesis, mechanisms and functionalisation of FNDs The first book published by the key patent holder with his research group in the field of FNDs Fluorescent Nanodiamonds is an important working resource for a broad range of scientists and engineers in industry and academia. It will also be a welcome reference for instructors in chemistry, physics, materials science, biology and related fields.

Semiconductor Quantum Bits

Semiconductor Quantum Bits PDF Author: Oliver Benson
Publisher: Pan Stanford Publishing
ISBN: 9814241059
Category : Science
Languages : en
Pages : 515

Get Book Here

Book Description
This book highlights state-of-the-art qubit implementations in semiconductors and provides an extensive overview of this newly emerging field. Semiconductor nanostructures have huge potential as future quantum information devices as they provide various ways of qubit implementation (electron spin, electronic excitation) as well as a way to transfer quantum information from stationary qubits to flying qubits (photons). Therefore, this book unites contributions from leading experts in the field, reporting cutting-edge results on spin qubit preparation, read-out and transfer. The latest theoretical as well as experimental studies of decoherence in these quantum information systems are also provided. Novel demonstrations of complex flying qubit states and first applications of semiconductor-based quantum information devices are given, too.

Photonic Quantum Technologies

Photonic Quantum Technologies PDF Author: Mohamed Benyoucef
Publisher: John Wiley & Sons
ISBN: 3527837434
Category : Science
Languages : en
Pages : 910

Get Book Here

Book Description
Photonic Quantum Technologies Brings together top-level research results to enable the development of practical quantum devices In Photonic Quantum Technologies: Science and Applications, the editor Mohamed Benyoucef and a team of distinguished scientists from different disciplines deliver an authoritative, one-stop overview of up-to-date research on various quantum systems. This unique book reviews the state-of-the-art research in photonic quantum technologies and bridges the fundamentals of the field with applications to provide readers from academia and industry, in one-location resource, with cutting-edge knowledge they need to have to understand and develop practical quantum systems for application in e.g., secure quantum communication, quantum metrology, and quantum computing. The book also addresses fundamental and engineering challenges en route to workable quantum devices and ways to circumvent or overcome them. Readers will also find: A thorough introduction to the fundamentals of quantum technologies, including discussions of the second quantum revolution (by Nobel Laureate Alain Aspect), solid-state quantum optics, and non-classical light and quantum entanglement Comprehensive explorations of emerging quantum technologies and their practical applications, including quantum repeaters, satellite-based quantum communication, quantum networks, silicon quantum photonics, integrated quantum systems, and future vision Practical discussions of quantum technologies with artificial atoms, color centers, 2D materials, molecules, atoms, ions, and optical clocks Perfect for molecular and solid-state physicists, Photonic Quantum Technologies: Science and Applications will also benefit industrial and academic researchers in photonics and quantum optics, graduate students in the field; engineers, chemists, and computer and material scientists.

Optical Properties of Excited States in Solids

Optical Properties of Excited States in Solids PDF Author: Baldassare di Bartolo
Publisher: Springer Science & Business Media
ISBN: 146153044X
Category : Science
Languages : en
Pages : 749

Get Book Here

Book Description
This book presents an account of the course "Optical Properties of Excited States in Solids" held in Erice, Italy, from June 16 to 3D, 1991. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present physical models, mathematical formalisms and experimental techniques relevant to the optical properties of excited states in solids. Some active physical species, such as ions or radicals, could survive indefinitely if they were completely 'isolated in space. Other active species, such as excited molecular and solid-state systems, are inherently unstable, even in isolation, due to the spontaneous mechanisms that may convert their excitation energies into radiation or heat. Physical parameters that may be used to characterize these excited systems are the localization or delocalization, and the coherence or incoherence, of their state excitations. In solids the excited states, whether they are localized (as for impurities in insulators) or delocalized (as they may occur in semiconductors), are relevant in several regards. Their de-excitation is extremely sensitive to the nature of the excitations of the systems, and a study of the de-excitation processes can yield a variety of information. For example, the excited states may represent the initial condition of the onset of such processes as Stokes-shifted emission, hot luminescence, symmetry-dependent Jahn-Teller and scattering processes, tunneling processes, energy transfer to like and unlike centers, superradiance, coherent radiation, and excited state absorption.

Colloidal Semiconductor Nanocrystals: Synthesis, Properties, and Applications

Colloidal Semiconductor Nanocrystals: Synthesis, Properties, and Applications PDF Author: Vladimir Lesnyak
Publisher: Frontiers Media SA
ISBN: 2889632695
Category :
Languages : en
Pages : 110

Get Book Here

Book Description


Semiconductors and Semimetals

Semiconductors and Semimetals PDF Author:
Publisher: Elsevier
ISBN: 0443296898
Category : Science
Languages : en
Pages : 93

Get Book Here

Book Description
Boron Nitride, Volume 115 in the Semiconductors and Semimetals series, highlights new advances in the field, with this new volume presenting interesting chapters that are written and contributed to by an international board of authors. - Provides the latest information on boron nitride research - Offers outstanding and original reviews on a range of boron nitride research topics - Serves as an indispensable reference for researchers and students alike